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Fatigue crack propagation

Repetition Ð Crack initiation and growth 

Small cracks
• Shear driven
• Interact with microstructure
• Mostly analyzed by continuum

mechanics approaches

Large cracks
• Tension driven
• Fairly insensitive to 

microstructure
• Mostly analyzed by fracture

mechanics models

σ

σ

Stage II
Tension driven crack

(ÒpropagationÓ)

Stage I
Shear driven crack

(ÒinitiationÓ)
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Stress intensity factors and fracture

In static loading, the stress intensity factor for a small 
crack in a large specimen can be expressed as
K f aI = ( )σ ,  where f  depends on geometry

• If the stress is kept constant, we will get fracture for 
a certain crack length, a=aC, which will give 
KI=KIC.

• For a<aC(KI<KIC) the crack will not propagate (in 
theory)

In dynamic loading, we will still get fracture if the 
stress intensity factor, for some instant of time, exceeds 
KI=KIC

• However, for KI<KIC, the crack may still propagate. 
Since this means that a (and KI) will increase, we 
will eventually obtain fracture when a=aC.
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Crack growth as a function of ∆K

In experiments, crack propagation has been measured as a 
function of the stress intensity factor

I II III

log
da
dN

log ∆K

∆Kth KC

There exists a threshold value of 
∆K below which fatigue cracks 
will not propagate

At the other extreme, Kmax will 
approach the fracture toughness 
KC, and the material will fail

A linear relationship between 
log d

d
a

N( ) and ∆K  in region II

Note that ∆K depends on the 
crack size. This is not shown in 
the plot
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Crack growth in region I

For small ∆K (region I), crack propagation is 
difficult to predict since it depends on 
microstructure and flow properties of the material

Here, the growth may even come to an arrest

Crack growth rate is sensitive to the size of the 
grains. Finer grains gives

• Closer spacing of grain boundaries, 
which the crack has to break through

• Increased yield stress (normally)
• Decreased roughness of the crack

Crack growth predicted by
• models of type d d pa N f= ( )∆γ ,

where ∆γ p is plastic shear strain range
• empirical adjustment of ∆K - d da N–curve
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Crack growth in region II and III

Region II

For larger magnitudes of ∆K (region II), the crack growth rate 
will be governed by a power law (such as Paris’ law)

The crack growth rate is fairly insensitive to the microstructure 
(however, the constants m and C are, of course, different for 
different materials)

If region II includes the dominating part of the fatigue life, the 
fatigue life can be directly estimated by integrating Paris’ law

Region III

If the stress intensity ratio is increased even further (region III), 
the crack growth rate will accelerate and finally fracture will 
occur
The behavior of this fracture is rather sensitive to the 
microstructure and flow properties of the material.
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Crack propagation laws Ð introduction

It has been found that, for dynamic loading of a crack, the 
three most important factors determining the propagation 
(growth) of the crack are

∆K K K≡ −max min – the stress intensity range
R K K≡ min max  – the stress intensity ratio
  H  – the stress history

Thus, the crack growth rate (i.e. growth per stress cycle) 
can be expressed as

  
d
d

a
N

f K R= ( , , )∆ H

where d d
a

N  is the crack growth per stress cycle
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ParisÕ law

Paris’ law can be written as
d
d

a
N

C K m= ∆
where  C and m are material parameters
One of the first (1962) and most widely used fatigue crack 
propagation criteria

ÒAlgorithmÓ
1. Find stress intensity factor for the current geometry

2. Find crack length corresponding to K Kmax = C
3. Check if the requirements for linear elastic fracture mechanics are 

fulfilled
4. Integrate Paris’ law
5. Solve for the number of stress cycles corresponding to failure

Important
If the stress intensity factor includes a geometric function of a, 
estimated (or analytic) values of this function has to be used
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ParisÕ law Ð drawbacks

Compared to a “general” crack propagation criterion

  
d
d

a
N

f K R= ( , , )∆ H

Paris’ law does not account for
• mean stress effects (described by the R-ratio)
• history effects (introduced by H)

Further, Paris law is only valid in conditions with
• uniaxial loading
• “long cracks” 
• LEFM-conditions

We will have a closer look at
• short crack theory
• retardation models due to overloads
• crack closure effects
• crack propagation in multiaxial loading
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Short cracks

So far
d
d

a
N

f K= ( )∆

where ∆K  depends on the 
amplitude of the normal stress 
(and geometry)

But short cracks are shear 
stress driven also LEFM is 
not valid

Two types of short cracks
• mechanically short cracks – 

propagate faster than large 
cracks with same ∆K

• microstructurally short cracks 
– interact closely with the 
microstructure and grow fast

Short Crack Theory

Microstructural 
Threshold

C
ra

ck
 S

pe
ed

Crack Length

∆σ1 > ∆σ2
a1 < a2
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Variable amplitude loading (H)

crack

Plastic

zone 
(tension)

Loading Unloading

crack

Plastic zone

(compression)

σY

σY

σ σ

A (tensile) overload will introduce (compressive) residual 
stresses

These residual stresses will influence ∆K and thus the rate of 
crack propagation
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The Wheeler model

The Wheeler model is used to define the 
reduction of the crack growth rate due to an 
overload

The reduction factor is 
defined as

Φ ∆
R

c

0d
= +





a d
γ

 

The reduced crack growth rate 
is then calculated as

d
d

d
dR

R
a
N

a
N





 = Φ

crack

d0

∆a
dc



Variable  Amplitude Loading, contÕd

The Wheeler model is appropriate for single 
overloads

The reduction of crack growth rate acts only as long as 
the cracks “current plastic zone” is within  the 
plastic zone from the overload

Multiple overloads or “stochastic” loads

• Cycle-by-cycle integration of 
• Appropriate crack growth law

that takes 
• Retardation/acceleration effects

into account
“Normal” crack propagation laws are usually 
conservative

Fatigue crack propagationSolid Mechanics Anders Ekberg

12 (20)

crack
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Crack closure (R)

Elber, in 1970, discovered that crack closure exists in cyclic 
loading, even for loads that are greater than zero

This crack closure will decrease the fatigue crack growth rate 
by reducing the effective stress intensity range

The stress intensity rate
∆K K K

K K

≡ −

= [ ]
max min

min minmax ,0

Crack closure att K=Kop gives
∆K K Keff op≡ −max

Paris law using effective stress intensity rate
d

d eff
a

N C K m= ∆

Empirical relation
K R K

R R R R
op =

= + + − ≤ ≤
ϕ

ϕ
( )

( ) . . .   
max

0 25 0 5 0 25 1 12
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Crack closure and arrestment

Crack closure

Kmax

∆Keff

Kop

Kmin

∆K

If the crack is closed throughout the stress cycle, the 
crack will arrest

This is not the only mechanism of a crack to arrest!
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Crack closure and arrestment Ð II
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Smallest magnitude of 
Kmin in Paris law

∆KParis
∆KElber

∆KParis

Using Elber 
correction in 
Paris law is 
conservative 
(predicts a 
longer 
fatigue life)

The only 
difference 
when using 
Elber 
correction is 
in a new, 
higher Kmin
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Crack arrestment
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Crack growth treshold

By taking crack 
closure into account 
(using Elber 
correction), we can 
model a R-ratio 
dependence

compressive mid 
stress ⇒ slower crack 
propagation

tensile mid stress ⇒  
faster crack 
propagation
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Crack arrest at different scales

A The load magnitude is 
below the fatigue limit ⇒  
we will not initiate any 
(macroscopic cracks)

B The applied load gives a 
stress intensity below the 
fatigue threshold stress 
intensity ⇒  macroscopic 
cracks will not continue to 
grow

A

B

Fatigue
failure

loga

KI,th = αUσ πa

No fatigue failure

No propagation

log ∆σ

log ∆σ e
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Cracks in mixed mode loading

σ

σ

σ + ∆σ

σ + ∆σ

σ + ∆σ

σ + ∆σ
Cracks that are loaded in mixed mode, will normally tend to 
propagate in pure mode I

One exception is when a crack propagates along a weak zone 
(e.g. a weld). In this case, an effective stress intensity factor can 
be employed

∆ ∆ ∆K K Keff I II= + ⋅( )2 20 8.
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Crack propagation Ð summary
Under one dimensional, elastic conditions and constant load range  
Paris’ law, can predict fatigue life of large cracks

Under variable amplitude loading, plastic residual stress fields mostly 
gives a decrease in crack growth rate.

Microstructurally small cracks interact closely with microstructure. 
Mechanically small cracks propagate faster than long cracks.

Closure effects of large cracks can give a pronounced effect. It’s one 
mechanism behind crack arrestment 

In multiaxial loading, most cracks tend to propagate in pure mode I 

Less ÒmatureÓ areas
Cases where LEFM is not applicable

The propagation of short, especially microstructurally short, cracks

Cases where crack closure and crack friction has a profound effect

Conditions of variable amplitude loading

Multiaxial loading conditions


