Structural Dynamics Control
TME146
Quarter 2, 2020/2021

- Credits: 7.5 Higher education credits (hec)
- Institution: Dept. of Mechanics and Maritime Sciences
- Teaching Language: English
- Prof. Viktor Berbyuk – Lecturer & Examiner

PREREQUISITES:

Basic knowledge in dynamics of particles and rigid bodies vibrations, some familiarity with system control.
Course Aim

• Cross the bridge between the structural dynamics and control engineering and give insight into smart materials and active structures for vibration control.

• Give knowledge on methods and concepts of passive, semi-active and active vibration control of structures and dynamic systems.

• Give knowledge on experimental validation of vibration control algorithms by using modern data acquisition software and hardware.
Course Organization

- Lectures and Problem Solving Sessions
- Computer Assignments in Matlab
- Experimental Validation in Lab.
- Papers Review Project (*not compulsory*)
- Written exam.
- Block Schedule: C

- Mondays: 13:15-17:00 (Lectures & Computer Assignments)
- Thursdays: 08:00-11:45 (Lectures & Computer Assignments)
- Fridays: 15:15-17:00 (Problem Solving Sessions)
LEARNING OUTCOME

• **Knowledge how to formulate and solve** passive, semi-active as well as active vibration control problems for structures and dynamic systems

• **Knowledge how to evaluate and validate** vibration control algorithms by experiments and practice with modern data acquisition software and hardware (CompactDAQ, CompactRIO)

• **Knowledge about smart materials sensor and actuators** technology for active structural dynamics applications.
Integrated Teaching Approach: Theory, Virtual Instrumentation and Graphical System Design, and Experiment

Structural Dynamics Control

MATLAB
SDC Course: Lab 1

- Parameter identification for stiffness & damping
- Design of passive vibration absorber
 - Vibration analysis of carts using LabVIEW VI
 - The measurement system CompactDAQ
 - 3 accelerometer channels module NI9233
 - Manual speed control
 - Change of masses and springs is done easily
SDC Course Lab 2

- Study and work with Real-time controller
- Analyze performance of semi-active damper
- Compare different vibration control algorithms.

- CompactRIO
 Vibration control of carts using LabVIEW VI at RT-processor level
- 2 accelerometers channel module NI9233
- 1 ch. Voltage output for motor speed module 9215
- 1 ch. Voltage output for damper current
Vibration Control Test Rig at the Vibrations and Smart Structures Lab
Learning Outcome Applications

MECHANICAL SYSTEMS

- DYNAMICS, CONTROL AND PARETO OPTIMIZATION OF ENGINEERING SYSTEMS
- VIBRATION DYNAMICS AND CONTROL, SMART STRUCTURES
- ACTIVE TECHNOLOGY AND SUSPENSIONS
- MECHANICAL POWER TRANSMISSION SYSTEMS
- VEHICLES DYNAMICS, SAFETY, COMFORT, ENERGY EFFICIENCY
- WIND TURBINE TECHNOLOGY
- POWER HARVESTING FROM VIBRATIONS

Professor Viktor Berbyuk, e-mail: viktor.berbyuk@chalmers.se
Course textbook:

Berbyuk V., *Structural Dynamics Control*, Lecture Notes, CHALMERS.

Textbook available at Cremona for SEK 270 before course start.

Structural Dynamics Control
Second Edition

VIKTOR BERBYUK

Department of Applied Mechanics
Division of Dynamics
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2014
Thank You for Your Attention!

Welcome to the TME146 course!

Viktor Berbyuk
E-mail: viktor.berbyuk@chalmers.se

http://www.chalmers.se/sv/Personal/Sidor/viktor-berbyuk.aspx