Solutions to the written examination in Fatigue Design for:

- * IMP in Automotive Engineering
- * IMP in Naval Architecture
- * M4 0722 MMA115 (Utmattningsdimensionering)

THEORETICAL PART (14 P)

Question 1 (4 p)

a) A larger notch root radius, r, means that increased stresses prevail deeper into the material, facilitating growth of an initiated crack. Hence, larger r-values are expected to result in higher K_f -values (closer to K_f). This is also seen from the structure of the expression of the notch sensitivity q.

b) Log
$$5 \cdot 10^4 = 4.70$$
, $2 \sigma = 0.400$

Hence Log
$$N_{97.5} = 4.70 - 0.40 = 4.30 \Rightarrow N_{97.5} \approx 2.10^4$$

Question 2 (3 p)

There are crack closure effects at repeated loading in the growing crack tip (plasticity, environment etc) meaning that only part of ΔK_1 is effective in the crack growth process. When R increases $K_{I,min}$ increases and the closure effect becomes smaller. Then more of ΔK_1 is effective and da/dN increases.

Question 3 (3 p)

Rainflow count is described in Dowling p 404-406. Rainflow counting now gives four strain cycles for the present sequence with

Cycle	Mid strain ε_{mid}	Amplitude strain ε_{amp}
A-D-A	0	4.5
В-С-В	0.5	2
E-F-E	2.5	1
G-H-G	-2	0.5

Question 4 (4 p)

- a) See Dowling p 671. The critical plane concept is an approach used in numerical calculations to find the material plane where the largest fatigue damage, according to a fatigue criterion, occurs during cyclic loading. In principle, the fatigue damage is calculated on a large number of material planes, each of them having different orientations. The plane that experiences the largest fatigue damage is identified as the "critical plane". In a multi-axial fatigue situation, the principal stress and strain directions vary in time (in-phase, out-of-phase, proportional or non-proportional loading). The critical plane must be used to find the material plane that experiences the largest fatigue damage. This is particularly important for elasto-plastic material responses.
- b) See Dowling, p 402: The linear damage rule defines a cycle ratio n_i/N_i where n_i is the number of cycles at stress level S_i and N_i is the fatigue life at S_i . The damage fraction D_i is defined as the fraction in life used up at this stress level, $D_i = n_i/N_i$. Failure is assumed to occur when Σ_i $D_i = 1$ The linear (Palmgren-Miner) damage rule can not account for sequence effects.

CT CHALMERSFASTIGHETER

Falique Design 050819 Q5 (12p) For case a) the sequence is just one cycle with $T_m = 100$ and $T_a = 50$ MPa. SWT, Dowling p 394 -> Tar = V Tmax Ta = V150.50 = 87 MPa < Ter -> very long life in most cases. For case b) we have two cycles with $T_m = 75$ and $T_a = 125$ MPa $T_m = 75$ and $T_a = 25$ MPa respectively the second one is insignificant, hence SWT => Tar= 1200-125 = 158 MPa (Second cycle Var = 125:100 = 50 MPa < Ter) The expected life can be estimated thou Var = 430 · N log Var = log 430 - 0.1 log N -> $\log N = \frac{\log 430 - \log 158}{0.1} = \frac{2.633 - 2.199}{0.1} = 4.34$

V = 22000 sequences

CTT CHALMERSFASTIGHETER

6508F9 Fatigue Design Q6 (12p) Use Dowling Fig 8.17 b lor geometry. assume crach radius a small 20. KIP = P F/TTa = $=\frac{45\cdot10^{3} 0.728}{45\cdot10} \sqrt{\pi a} = 72.8 \sqrt{\pi a}$ $K_{In} = \frac{6M}{Wt^2} F \sqrt{\pi a} = \frac{6.100.10}{10^2.45} \sqrt{\pi a} = 97 \sqrt{\pi a}$ Final crack length of determined home Kmax = Kip+ Kim < KIC/3 $(72.8+97)\sqrt{\pi a_f} \leq \frac{60}{3} \Rightarrow a_f \leq \frac{1}{\pi} \left(\frac{20}{169.8}\right)^2 = 0.0044m$ Crach is located in weld, hence use DT = Tmax - Tmin due to welding residual suesses, SSH extract P4:86 owing $P = 520 \Rightarrow -0.6$ $N = \frac{a_1 - \frac{27}{2} - a_1 - \frac{27}{2}}{2} = \frac{(4.4.5^3) - (2.5^4)}{2}$ Dowling P 520 => C(FASVIT) m(1-2) 5.1013(0.728(2.97.VIT)3.2. (-0.6) $N = 9.8 \cdot 10^6$ yeles Chech DK = 3.5 > DKTH

CTT CHALMERSFASTIGHETER

Fatigue Design 050819 Q7 (12 p) Thick-walled pressure vessel (adjustable ends -> TZ=0) Vr(r)= A-B/n2 $\mathcal{T}_{\varphi}(r) = A + B/r^2$ $A = \frac{1}{3}P$ Vr (d/2) = $B = \frac{4}{3} P(\frac{d}{2})^2$ At inner surface we have $T_r = -P$ $T_{\varphi} = \frac{3}{3}P$ Follow handout Multi-axial Fatigue 2.11 $\nabla_{ij}(t) = p(t) \begin{bmatrix} -1 & 0 & 0 \\ 0 & 5/3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ Pulsating pressure => $V_{ija} = \frac{P_{max}}{2} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 5/3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ Vh(t) = 3 Th = 2 P(t) =) Th, mid = 2 Pmax The deviatoric stress tensor becomes

 $\mathcal{T}_{ij}^{d}(t) = p(t) \begin{bmatrix} -1 - \frac{2}{9} & 0 & 0 \\ 0 & \frac{5}{3} - \frac{2}{9} & 0 \\ 0 & 0 & -\frac{7}{9} \end{bmatrix} = p(t) \begin{bmatrix} -11 & 0 & 0 \\ 0 & 13 & 0 \\ 0 & 0 & -2 \end{bmatrix}$

Kontorsarosse

CTT CHALMERSFASTIGHETER

Fatigue Design 050819 Q7 cont'd Hence V_{ij} , mid = $\frac{P_{max}}{18} \begin{bmatrix} -11 & 0 & 0 \\ 0 & 13 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ and the stress deviator amplitude $V_{ijia} = P_{ijia} = P_{ijia}$ The Dang Van arterion, MF p 17 $T_{ERDV} = \frac{T_{1,a} - T_{3,a}}{2} + C_{DV} T_{h,max}$ FROV = Pmax (13-(-11)) + CDV = Pmax Determine CDV, see MF p20-21 $Y_{FL} = 275 MPa =) \frac{275 - (-275)}{2} = \overline{V_{eDV}} =) (T = 275)$ T = 450 MRa = 3 $450-0 + C_{DV} \frac{450}{3} = Teor$ $\rightarrow C_{DV} = \frac{275 - 225}{150} = 0.333$ Pmax ·24 + 0.33. 2 Pmax > 275 $P_{\text{max}} \ge \frac{275}{0.74} = 372 MRa$

ntorsarase