Solutions to the written examination in Fatigue Design 2009-05-25

for the Master's programs Applied Mechanics (MPAME), Advanced Engineering Materials (MPAEM) and Naval Architecture (MPNAV)

THEORETICAL PART (14 p)

Question 1 (4p)

a) We have Log $N_{97.8}$ = Log N_{50} - 2σ = Log $(6\cdot10^4)$ - 2σ = 4.78 - $2\cdot0.2$ = 4.38 Hence $N_{97.8}\approx2.5\cdot10^4$.

b)

See Dowling p 429. The equivalent completely reversed stress amplitude σ_{ar} is defined on Dowling p 431. We have for the Modified Goodman equation (9.17) and Smith-Watson-Topper (SWT), (9.18) respectively

$$\sigma_{ar} = \frac{\sigma_a}{1 - \frac{\sigma_m}{\sigma_f}}$$
 where σ'_f is a material constant from the Basquin equation (S-N curve)

$$\sigma_{ar} = \sqrt{\sigma_{\rm max}\sigma_a}$$
, where $\sigma_{\rm max} = \sigma_{\rm m} + \sigma_{\rm a}$

Question 2 (3p)

Use Dowling p 446-447. Inserting strain values we identify cycles as:

Cycle	Mid strain (%)	Amplitude strain (%)
C-D-E	0.35	0.10
B-E-F	0.15	0.30
G-H-I	0.10	0.05
A-F-I	0.10	0.45

Question 3 (3p)

Brittle fracture occurs when $K_{IC} = \sigma 1.12 \sqrt{\pi a}$ For small cracks ductile tearing occurs when $\sigma = \sigma_0$. An approximate crack length marking the change from brittle to ductile fracture is obtained from $K_{IC} = \sigma_o 1.12 \sqrt{\pi a_c}$

Hence $a_c = (K_{IC}/(1.12 \cdot \sigma_o))^2/\pi \approx (120/(1.12 \cdot 620))^2/3.14 \approx 0.01 \text{ m} = 10 \text{ mm}$

THEORETICAL PART (14 p), cont'd

Question 4 (4p)

a)

The joint class C is the stress range for which the welded joint can sustain the fatigue life $n_{\rm t} = 2 \cdot 10^6$ cycles with the risk of failure $Q_{\rm B} = 0.023$ (2 standard deviations shift of the median curve for the welded joint).

b)
See the hand-out on Multi-axial fatigue p 16-17. Initiation of fatigue (cracks) will take place (for proportional loading with fixed principal stress directions) if

Dang Van: $\sigma_{\text{EQDV}} \ge \sigma_{\text{eDV}}$ where $\sigma_{\text{EQDV}} = (\sigma_{1a} - \sigma_{3a})/2 + c_{\text{DV}} \sigma_{\text{h,max}}$ Here the first term corresponds to τ_a , the maximum shear stress amplitude in a critical plane, $\sigma_{\text{h}} = \text{is}$ the hydrostatic stress and c_{DV} and σ_{eDV} are material parameters determined from two different fatigue limits.

Crossland: $\sigma_{EQC} \ge \sigma_{eC}$ where $\sigma_{EQDV} = \max_{t} (\sigma_{v,Ma}) + c_{C} \sigma_{h, max}$ Here the first is the von Mises effective stress and c_{C} and σ_{eC} are material parameters determined from two different fatigue limits.

PROBLEM PART (36 p)

NOTE: To obtain maximum points for each problem, the solution must be clearly motivated and all the equations used from the literature should have a clear reference (author, page and equation number)

Q5	For the plate we have
	$\frac{w_2}{w_1} = 1.2$
	$\frac{w_2}{w_1} = 1.2$ $\frac{3}{N_1} = \frac{7}{10}$ $\Rightarrow h_{\ell} = 2.5$
	The strain amplitude during cyclic wading 5 = ± 200 MPa is obtained
	From Noubers rule, Douling P 686 For perfectly plastic malerial
	For perfectly plastic malerial (hes) 2 (25.200) 2 0 mg 1
	$\mathcal{E}_{a} = \frac{(4e5)^{2}}{\sqrt{e}} = \frac{(2.5.200)^{2}}{400.2.10^{5}} = 0,0031$
	The Coffin - Manson relation, Dowling , 721
	$\Xi_{\alpha} = \frac{\nabla E}{E} (2N_{F})^{b} + \varepsilon_{p}' (2N_{F})^{c} \longrightarrow -0.62$
	$0.0031 = \frac{1200}{2.105}(2N_{f})^{-0.1} + 1.0(2N_{f})^{-0.62}$
	Nx 3.104 cycles

PROBLEM PART (36 p) cont'd

Question 6

Machined surface use Dowling p 479, and 1 ksi \approx 6.9 MPa, hence

Machined $m_s \approx 0.72$ gives $\sigma_{FL} = \pm 360$ and $\sigma_{FLP} = 425 \pm 319$ MPa (or $\sigma_{FLP} = 319 \pm 319$)

$$\begin{split} &\sigma_{\rm EQDV} = \frac{360-0}{2} + c_{\rm DV} \, \frac{360}{3} = \sigma_{\rm eDV} = \frac{319-0}{2} + c_{\rm DV} \, \frac{744}{3} \\ &\left(\text{or } \sigma_{\rm EQDV} = \frac{360-0}{2} + c_{\rm DV} \, \frac{360}{3} = \sigma_{\rm eDV} = \frac{319-0}{2} + c_{\rm DV} \, \frac{638}{3} \right) \end{split}$$

$$c_{\rm DV}$$
 = 0.16 (or $c_{\rm DV}$ = 0.22) and $\sigma_{\rm EQDV}$ \approx 199 MPa (or $\sigma_{\rm EQDV}$ \approx 206 MPa)

For the biaxial loading, use Ekberg Multi-axial fatigue p 17 with σ_x and σ_y being principal stresses.

$$\sigma_{\text{EQDV}} = \frac{150 + 150}{2} + c_{\text{DV}} \cdot 0 = 150 \text{ MPa}$$

$$SF_{\text{DV}} = \frac{199}{150} = 1.33 \text{ (or } SF_{\text{DV}} = \frac{206}{150} = 1.37 \text{)}$$

$$\sigma_{x,\mathrm{res}} = 100 \Rightarrow \sigma_{\mathrm{h,res}} = \frac{100}{3} \Rightarrow \sigma_{\mathrm{EQDV}} = 150 + 0.16 \cdot \frac{100}{3} \approx 155 \text{ (or } \sigma_{\mathrm{EQDV}} = 150 + 0.22 \cdot \frac{100}{3} \approx 157 \text{)}$$

$$SF_{\text{DV}} = \frac{199}{155} = 1.28 \text{ (or } SF_{\text{DV}} = \frac{206}{157} = 1.31 \text{)}$$

PROBLEM PART (36 p) cont'd

= 29:10 CYCLES.

Note change AISI4030 to AISI4340, Dowling p 553

AISI 4030:
$$G_0 = 1255 \text{ mPa}_{A}$$
, $K_{IC} = 130 \text{ mPa}_{A} \text{m}_{I}$ $C_0 = 5.11 \cdot 10^{-13}$
 $m = 3.24 \text{ AND } \Upsilon = 0 \text{ FOR } R < 0$.

 $S_A = \frac{32 \text{M}_A}{\pi d^3} = \frac{32 \text{PL}}{\pi d^3}$
 $S_B = \frac{32 \text{Mg}}{\pi D^3} = \frac{32 \cdot 2 \text{PL}}{\pi (\frac{\text{M}}{3}d)^3} = \frac{32 \text{PL}}{\pi d^3} \left(\frac{2 \cdot 23}{64}\right) = \frac{32 \text{PL}}{\pi d^3} \left(\frac{54}{64}\right) < S_A$
 $i \in A$ is the chack sine to be evaluated.

 $S_A = \frac{37 \cdot 16000 \cdot 200}{\pi \cdot 60^3} = 151 \text{ mPa}_{A}$

For this case Fig 8.17 in bowning gives

 $K_{I} = 0.73 \text{ S} \sqrt{\pi} \Delta$ (if a < 0.35d)

With $G_0 = 0.003 \text{ m}$ $K_{IO} = 0.33 \cdot 151 \sqrt{\pi} 0.003 = 10.317 \text{Reso}_{A}$

The maximum K_{I} Allowers is $K_{IC}/S = 26 \text{ tr} \text{Color}_{A}$
 $G_1 \text{ ving } G_{\text{max}} = \frac{1}{\pi} \left(\frac{26}{0.33 \cdot 151}\right)^2 = 0.0177 \text{ m}$ (< 0.35d)

 $G_1 \text{ or } S_1 \text{ or } S_1 \text{ or } S_2 \text{ or } S_1 \text{ or } S_2 \text{ or } S_$