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Solutions to the written examination in Fatigue Design 2010-05-24 

 
(MMA 115) for the Master’s programs Applied Mechanics (MPAME),  

Advanced Engineering Materials (MPAEM) and Naval Architecture (MPNAV) 
 

 
THEORETICAL PART  (14 p) 

Question 1 (4p) 

See Dowling p 468 – 471. At long lives the conditions at the notch root are elastic. Then 
the nominal stress multiplied by the stress concentration factor kt should, ideally, be equal 
to the fatigue limit. However, this maximum stress occurs only at a point and decreases 
rapidly. It is believed that stresses material is not sensitive to peak stresses, but rather to 
the average stress that acts over a small, finite region (comparable to several grain 
diameters). Hence, the effective concentration factor, the fatigue notch factor, kf < kt, For 
large notch radii ρ values the stresses decrease slower and hence kf ≈ kt. 
 

 
 
 
Question 2 (4p) 
 

a) See Dowling p 641-642. The cyclic stress-strain curve is determined from tests 
with prescribed strain amplitude at Rε = -1. Stable loops at half fatigue life and for 
different strain amplitudes are used as shown in the figure below. A line from the 
origin through the tips of the loops (O-A-B-C) forms the cyclic stress strain curve. 
It is of the Ramberg-Osgood form: 

 
εa = σa/E + (σa/H’)1/n’ 
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THEORETICAL PART  (14 p), cont’d 

 

 
 
 

b) See Dowling p 728-733: In the strain-based approach, the Coffin-Manson equation 
 
εa = σf’/E (2Nf)b + εf’ (2Nf)c 

 

relates the total strain amplitude εa to the fatigue life Nf, the first term is the elastic 
strain amplitude and the second term is plastic strain amplitude. In the modified 
Morrow approach, the mean stress σm is included in the first elastic term,  

 
εa = σf’/E (1 – (σm/σf’))(2Nf)b + εf’ (2Nf)c 

 
Question 3 (4p) 
 

a) See Dowling p 322-326. The singularity is a square root singularity, i.e. the stress 
varies with 1/√r, where r is the distance from the crack tip. The stress close to the 
crack tip is proportional to the stress intensity factor, i.e. σ ∼ KI/√r. The validity 
of LEFM is related to the size of the plastic zone. If the plastic zone is large, it 
redistributes the stress at the crack tip and the singularity diminishes and KI 
is not a meaningful measure of the stress at the crack tip any more. 

 
b)   The reasoning is that the stress magnitude at the crack tip is reduced from 

(theoretically, according to linear elastic theory) infinity to roughly 3 times the 
nominal stress (estimation based on stress concentration factor for a central hole 
in a large sheet). The risk is high that a new crack will initiate from the hole since 
the hole is a stress concentration and the nominal stress may be high enough to 
drive the crack. It does however not has to be the case since the crack may have 
grown out of the highest stressed volume: If the crack is large it will propagate 
even under a modest nominal stress. 
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THEORETICAL PART  (14 p), cont’d 
 
 
Question 4 (3p) 
 
a) 
See handout on Multi-axial fatigue. The criterion for initiation of fatigue cracks 
according to the Dang Van criterion can be written as: σEQDV ≥ σeDV where   
σEQDV = (σ1a – σ3a)/2 + cDV σh,max  

 
Proportional loading is assumed. Here the first term corresponds to τa, the maximum 
shear stress amplitude in a critical plane, σh = is the hydrostatic stress and cDV and σeDV 
are material parameters determined from two different fatigue limits. 
 
The equivalent stress according to Dang Van (other criteria will give the same results) 
will be  
 
σa − 0

2
+ cDV

σa +σa + 0

3
  and  σa +σa

2
+ cDV

σa −σa + 0

3
 

Thus the 180° out‐of phase loading will be worst as long as  cDV < 3 4 . 
 
 
b) 
For constant amplitude loading, one may have a fatigue limit at 5 ·106 cycles, or have 
a bilinear fatigue resistance curve with the fatigue resistance curve up to nt = 5·106 
cycles and then a different slope to nt = 1·108 cycles where a fatigue limit is 
assumed, see figure below. However, for variable amplitude loading is found that 
there does not seem to be a fatigue limit, at least if some cycles in the load spectrum 
has a stress range larger than the constant amplitude fatigue limit. 
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PROBLEM PART (36 p) 
 
NOTE: To obtain maximum points for each problem, the solution must be clearly 
motivated and all the equations used from the literature should have a clear 
reference (author, page and equation number) 
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PROBLEM PART (36 p) cont’d 
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PROBLEM PART (36 p) cont’d 
 
Q7 
Use the hand-out for multi-axial fatigue, and the Crossland equivalent stress 
 
Material parameters 
Rotating bending:     400 + cC·400/3 = σeC  
Pulsating bending:    340 + cC·680/3 = σeC  
 
»  cC = 9/14 ≈ 0.64 and σeC = 3400/7 ≈ 485 MPa  
 
Operational loading 
The worst-case loading is when the stress components are in-phase. Due to the in-phase 
loading, the of the stress amplitude tensor will be  

σij,a =
200 100 0
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0 0 0
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with the deviatoric stress tensor 
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This will give the Crossland equivalent stress as  

σeqC =
3
2

σij,a
d σij,a
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7
≈ 307

  

 
This will give a safety factor of 
 SFC = 485/307 = 1.6 
 
 
2.  
 SFC = 485/σEQC = 1.25  » σEQC = 485/1.25 = 388 
 
The static loading will only contribute to the hydrostatic part. We obtain 
 
 cC·σxx,stat/3 = 388 – 307 = 81  » σxx,stat = 3·81/cC = 3·14·81/9 = 378 MPa. 
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3. Maximum stress 

σmax =
200 + 378 200 0

200 0 0

0 0 0
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gives the deviatoric stress tensor 

σmax
d =
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Maximum Von Mises effective stress 
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674 MPa < 700 MPa   »   no plasticity. 
 
 
 
 


