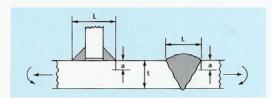

FATIGUE DESIGN (MMA115) 2009/10

Additional exercises

Example 1

A vertical crack with length a = 1.0 mm has been found at a butt weld as shown in the Figure. The crack is situated in a steel panel with thickness t = 8 mm. The panel is loaded by a membrane stress varying between $\sigma = -20$ MPa and $\sigma = +60$ MPa.



- a) Using linear elastic fracture mechanics and Paris law for crack growth, estimate the number of cycles for the crack to grow to a depth equal to half the plate thickness. Use the following values for the material parameters: $C = 3.9*10^{-12}$ and n = 3 (units $[\Delta K_{\rm I}] = {\rm MNm}^{-3/2}$ and $[a] = {\rm m}]$). The attached extract from the textbook: Dowling, N. E. Mechanical Behaviour of Materials, Second Edition may be used. (2p)
- b) Estimate, using fracture mechanics, a value for the fatigue limit for the plate in a) assuming an initial crack with the length a = 1.0 mm, that is: how large stress range can be allowed if there should be no crack propagation. The material in the plate has the yield stress $\sigma_Y = 250$ MPa. The threshold stress intensity factor range ΔK_{Th} can be taken as

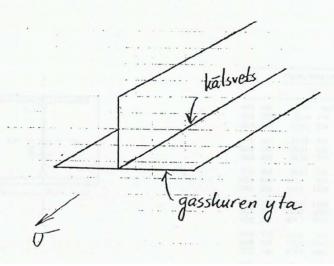
$$\Delta K_{\rm Th} = 7.6 - 5.5 R$$
,

where $R = \sigma_{min} / \sigma_{max}$, σ_{min} is the minimum and σ_{max} is the maximum stress in the weld during one load cycle including the welding residual stress, see also the Sheet Steel Handbook, p 4:86-87 (units as in a)). You may assume that the welding residual stress at the location of the crack is tensile with a magnitude \approx the yield stress. (4p)

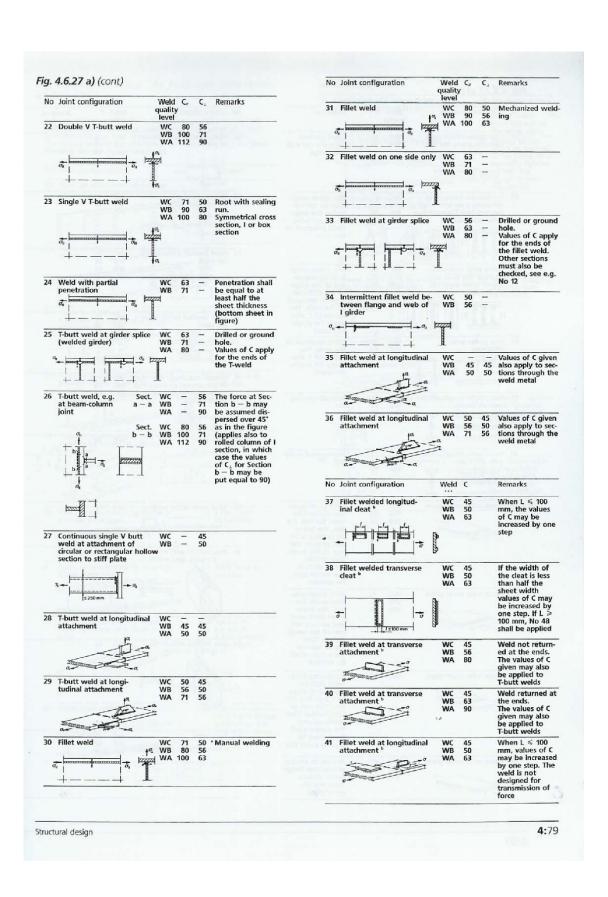
Figur 4.7.8 M_k för stum- och kälsvets (ref 4:29). Observera att när alt är förhållandevis stort, säg alt > 0,2, gäller inte approximationen f=1,12 M_k

a/t	M _k vid ren dragning								
0,500	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
0,200	1,000	1,000	1,000	1,019	1,057	1,111	1,157	1,146	1,146
0,100	1,000	1,013	1,067	1,113	1,173	1,259	1,335	1,316	1,316
0,050	1,029	1,075	1,151	1,216	1,301	1,441	1,557	1,557	1,557
0,020	1,111	1,240	1,423	1,558	1,715	1,914	2,068	2,069	2,069
0,010	1,377	1,537	1,764	1,931	2,127	2,373	2,564	2,564	2,564
0,005	1,707	1,905	2,186	2,394	2,636	2,941	3,179	3,179	3,179
0,002	2,268	2,530	2,904	3,181	3,502	3,907	4,223	4,223	4,223
0,001	2,811	3,137	3,600	3,943	4,341	4,844	5,235	5,235	5,235
L/t	0,2	0,3	0,5	0,7	1,0	1,5	2,0	3,0	5,0

FATIGUE DESIGN (MMA115) 2009/10, Additional exercises


Example 2

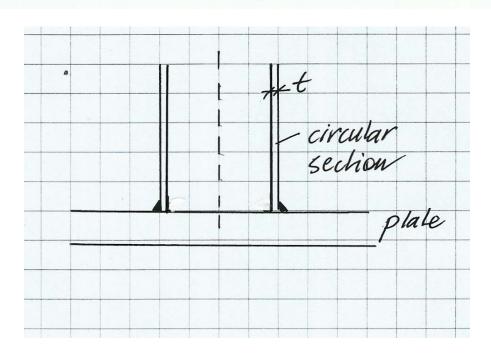
The Figure below shows a beam where a horisontal flange has been fillet welded manually fillet welded (double sided with the Weld Class WB) to a vertical web. The ends of the beam have been gas cut (Cutting Class Sk 2). The beam is subject to a normal stress with a time variation that can be described with a load collective with stress ranges as shown below. The normal stress has R = -1.


n_i (cycles)	$4.0*10^2$	$1.6*10^3$	1.0*10 ⁵	1.0*10 ⁶	1.0*10 ⁷
σ _r (MPa)	250	160	100	60	30

Can the welded joint be approved if it is designed according to the Palmgren-Miner linear damage accumulation rule? The consequence of a failure is serious. The design shall be based on the Steel Sheet Handbook. You may assume that the weld does not have a fatigue limit. You may put $\gamma_1 = 1.0$ and $\varphi_1 = 1.0$.

Fatigue tests with variable amplitude loads on welded joints show that peaks in the welding residual stress distribution will be relaxed after a short time period. Investigate if the fatigue life prediction is altered if you may assume that the welding residual stress $\sigma_{ws} = 80 \text{ MPa}$.

Kälsvets = fillet weld Gasskuren yta = Gas cut surface (Thermally cut surface) Use Joint classes from Sheet Steel Handbook handout and appended page


FATIGUE DESIGN (MMA115) 2009/10, Additional exercises

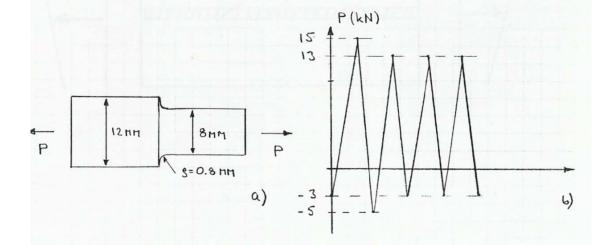
Example 3

- a) In a piping system there is a weld between a circular section and stiff supporting plate. The fillet weld is manually welded with weld quality WC. The circular section is subject to an axial stress with the stress ratio R = -1 and a load spectrum with the spectrum parameter $\kappa = 1/3$. Estimate the fatigue life if the dimensioning stress range σ_{rd} shall be 120 MPa. The circular cylinder has the wall thickness t = 10 mm. You may put $\gamma_f = 1$. The consequence of a failure is serious. (4 p)
- b) To increase the fatigue life (for the same dimensioning stress range σ_{rd} =120 MPa) two alternatives are considered
 - 1. to increase the weld quality to WB
 - 2. to shot peen the weld toe region so that the residual stress at the surface is $\sigma_{res} = -70$ MPa

Which alternative improvement would you propose? (4p)

c) Assume that weld above between circular section and the plate, with the weld quality WC, s subject to the load spectrum above for 10^5 cycles. What will the accumulated damage be, based on the Palmgren-Miner damage accumulation rule? If the weld also is subject to 10^3 overloads with $\sigma_r = 250$ MPa (at constant amplitude) what will those overloads give for accumulated damage? (4 p)

FATIGUE DESIGN (MMA115) 2009/10, Additional exercises


Example 4

5. When the machine part shown in Figure a) is loaded by completely reversed forces for a number of amplitudes the following set of data is obtained:

P (kN)	N (cycles to fracture)
13,1	54 000
11,9	102 800
10,0	365 600
8,9	804 200
8,1	1 603 000

Find an approximate stress-life (S-N) curve for this case, and determine how many load sequences according to Figure b) that are likely to be sustained before fracture.

The ultimate tensile strength σ_u of the material is 600 MPa and the yield stress σ_o is 420 MPa. (12 p)

