Introduction to Autonomous Agents 2008

2008-01-22

Lecture 1

What you will learn...

- The fundamentals of behavior-based robotics and evolutionary robotics
- The basics of robot hardware: sensors, actuators, and microcontrollers
- The basics of rational decision-making
- The basics of animal behavior and its relevance for autonomous agents
- The basics of learning and adaptive behavior for autonomous robots
- Elementary robot construction

Why you should take this course:

- Intelligent systems for decision-making and adaptive control are becoming increasingly important in industry
- In particular, autonomous robots are likely to appear in more and more applications in the near future
- The course is multidisciplinary, involving methods from many different fields of science and engineering
- It's really fun to work with autonomous robots ☺

- Intended to move around freely in unstructured environments, operating without continuous human guidance.
- Confronted with similar problems as biological organisms. Rapid reactions and adaptive behavior are often necessary
- Such robots are commonly developed in a biologically inspired framework, using behavior-based methods.

- Typical applications (today)
 - Entertainment
 - Vacuum cleaning
 - Lawn mowing
 - Internal transportations
 - Planetary exploration

- Typical applications (future)
 - Domestic service robots
 - Elderly care
 - Construction
 - Space applications(Extravehicular activity, EVA)
 - etc. etc.

- More examples...
 - Honda Asimo

However, humanoid robots will be considered in the Humanoid robotics course ...

- In this course we will focus on wheeled robots.
- In particular, we will construct a small two-wheeled robot in the 4:th quarter.

Course contents, Part I

- Quarter 3: Theory and robot simulations
 - Lectures
 - Home problems: theory and programming
 - Written exam
- A walktrough...

Robot hardware

- We will begin by a brief introduction to some of the main components in real robots:
 - Microcontrollers
 - Actuators
 - Sensors

Example of servo motor usage

Full-body motions:

Sommersault motion

Push-ups

Robot kinematics and dynamics

Kinematics:

 Determining the range of possible motions for a robot given the various constraints limiting the freedom of motion, and without taking into account the forces that cause the motion.

Robot kinematics and dynamics

Dynamics:

 Determining the motion of a robot under the action of forces (and torques).

Simulation of autonomous robots

- We will study simulated twowheeled differentially steered robots
- The simulations will include models of sensors and actuators
- The important issue of making simulations realistic (i.e. transferable to a real robot) will be studied

Simulation of autonomous robots

- For our simulations, we will use a Matlab simulator, ARSim
- The simulator allows the user easily to modify the setup of:
 - the robot
 - the arena in which it operates

Simulation of autonomous robots

Basic flow of a single-robot simulation

Animal behavior

- Brief introduction concerning animal nervous systems, and ethology (animal behavior) will be given
- Basic behaviors, such as reflexes and fixed-action patterns will be discussed

Behavior-based robotics

BBR

vs. Classical AI

Behavior-based robotics (BBR)

- Various architectures for behavior-based robots, such as ANNs and if-then-else-rules will be considered
- Methods for generating basic behaviors, such as exploration, collision avoidance etc. will be studied

Evolutionary robotics (ER)

- Evolutionary robotics, i.e. the generation of robotic brains (or bodies) by means of evolutionary algorithms, will be considered as well.
- A simulator (ERSim), based on the ARSim Matlab simulator will be used in the experiments.

Evolutionary robotics

Basic flow of evolutionary robotics

Evolutionary robotics

 Generation of basic behaviors by means of evolutionary algorithms will be studied:

Example: Garbage collection

Rational decision-making

- The theory of rational-decision making (von Neumann & Morgenstern) will be considered.
- The concepts of utility and rational agents are central.
- Biological examples will be used to illustrate the principles of rational decision-making.

Behavioral organization in robots

- **Behavioral organization** (behavior selection) allows one to move from simple behavior-based robotic brains to complex ones, particularly in motor tasks, e.g. navigation.
- Two classes of methods will be considered: arbitration methods and cooperative methods

Example: behavioral selection for simple exploration

- Two behaviors to be organized:
 - B1: Straight-line navigation
 - B2: Obstacle avoidance

Learning in animals and robots

- Learning deals with the modification of the brain of an animal (or a robot) during the life time of the individual.
- The relation between evolution (adaptation) and learning will be studied, as will the concepts of short-term and long-term memory.

Multirobot applications

 Division of labour in a group of robots inspired by ant's foraging behavior (collective robots).

Course contents, Part II

- Quarter 4: Robot construction part.
 - Group work
 - Robot design (given certain tasks)
 - Implementation
- Mandatory robot activities!
- A walktrough...

Platform: The Boe-Bot® robot

- Developed by Parallax Inc.
- Learn about
 - sensors
 - servo motors
 - microcontrollers
- Apply the theory from part I.
 - Implementation
- Groups of 4-6 students
- Use it out-of-the-box, or use your creativity!

Example: creative robots

An example from last year...

Topics

- Course introduction, introduction to autonomous robots.
- Kinematics, dynamics, and sensors of autonomous robots.
- Simulation of autonomous robots.
- Decision-making system of robots.
- Animal behavior: Lessons for robotics.
- Behavior-based robotics: Generating robot behaviors.
- Evolutionary robotics: Evolving basic behaviors.
- Utility theory and rational decision-making.
- Behavior organization in autonomous robots.
- Control system of robots (I+II)
- Information system of robots.
- Learning and adaptive behavior in animals and robots.
- Multi-robot applications.
- Robot construction.

- Lecturer: Krister Wolff
 - phone: 772 3625, email: krister.wolff@chalmers.se

- Course assistant: David Sandberg
 - phone: 772 3696, email: david.sandberg@chalmers.se
- Examiner: Mattias Wahde
 - phone: 772 3727, email: mattias.wahde@chalmers.se

- The course runs over 2 quarters. In order to complete the course, you must participate during both quarters!
- All parts are mandatory, i.e. home problems, written exam, and robot activities!
- Check the course homepage **regularly** for information:

http://www.am.chalmers.se/~wolff/AA/AutonomousAgents.htm

Detailed information regarding the robot construction part will

- Course literature (part I):
 - 1. Wahde, M.: An introduction to autonomous robots (lecture notes). Will be made available for download shortly.
 - 2. Xie, M. -- Fundamentals of robotics linking perception to action. Available at Cremona bookstore.
 - 3. Various scientific papers
 (web links or printouts will be made available during the course)

- Course literature (part II):
 - 4. Lindsay, A.: Robotics with the BoeBot Student guide v2.2,
 Available for download at www.parallax.com.
 - 5. The BasicX Manual: BX-24 Documents.
 Available for download at www.basicx.com.
 - 6. Various additional materials, which will be annonced in the beginning of Lp IV.

- Teaching hours and locations:
 - 3rd quarter (January 21 March 7):
 Tuesday 10.00 11.45, MC
 Friday 13.15 15.00, MC
 - 4th quarter (March 31 May 23):
 Tuesday 08.00-11.45, F7105A (ET-lab).

- Examination: Maximum total score is 50, divided according to
 - Two sets of home problems, 3rd quarter (25p maximum)
 - A written exam (by the end of the 3rd quarter, 25p maximum)
- Robot construction project give no points, but is mandatory to do. However, you may recieve two extra points for creativity.
- Regarding the home problems: You may discuss with other students, but you must hand in your OWN solution!

- Prerequisites:
 - You do not need to know about autonomous robots, neither simulations nor hardware.
 - You should be familiar with evolutionary algorithms, Matlab programming, basic physics (mechanics, electrical engineering) and artificial neural networks.

- Note: In order to **register** for the course, each student *must* send an email to <u>krister.wolff@chalmers.se</u> with his/her *name*, *affiliation* (i.e. cas, cth, gu, or other), and *civic registration number* (personnummer).
- Use <u>one single email address</u> throughout the course, with your <u>full name</u> (e.g. "Anders Andersson") in the "From" field, no nicknames! Use Western characters (no Chinese, Russian etc.)!
- Important information will be distributed via email!

Course Evaluations - CAS

- Three volunteers, please!
- Compensation will be paid from Chalmers:
 200-300 SEK

- Don't hesitatie to ask questions, any time:
 - You may come to my office (behind Café Bulten, walk up one floor).
 - Call me (031-7723625)
 - Send emails
- But check the web page first, please!

Reading Guidance

- Lecture 1: Course introduction, introduction to autonomous robots:
 - MW: p. 1-2:
 - 1 Autonomous robots; *important*
 - MX p. 1-26:
 - 1.1 Introduction; *important*
 - 1.3 Factory automation; *briefly*
 - 1.4 Impact of industrial robots; *briefly*
 - 1.5 Impact of humanoid robots; *briefly*
 - 1.6 Issues in robotics; *important*