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Literature for this lecture:
• Wahde, M. An introduction to adaptive algorithms and 

intelligent machines, p. 89-94 (distributed in the lecture)

• Additional reading: Scherffig, L. (2002): Reinforcement 
learning in motor control.
http://www-lehre.inf.uos.de/~lscherff/bachelor/rlimc.pdf

• Labella T.H., Dorigo M., Deneubourg J.-L. (2006): 
Division of Labour in a Group of Robots Inspired by Ants' 
Foraging Behaviour.
http://www.swarm-bots.org/index.php?main=2
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Part I: Learning and adaptive 
behavior in autonomous robots

• Characteristic of autonomous robots: self-
development and learning through 
interaction with its environment

• Algorithm(s) for a robot's ''mental 
development'':
– Reinforcement learning, Q-learning
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Learning
• Supervised learning:

– Teaching through examples
– States of the environment: s
– Availible actions: a
– Set of training examples: {s, a}-pairs

• Unsupervised learning:
– Biological organisms learn by trial-and-error
– Unknown situation: try some action, and 

observe the resulting state of the environment
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RL motivation
• Thorndike, 1911: Law of effect:

– Behaviors in animals which lead to reward are 
strengthened

– Behaviors that result in punishment or 
discomfort are weakened

– The amount of strengthening or weakening is 
proportional to the amount of reward or 
punishment
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Reinforcement learning
• Reinforcement learning is an 

intermediate method, between 
unsupervised and supervised learning:

– The agents action a in a given state s gives 
rise to a reinforcement signal r

– Thus, during reinforcement learning the 
information given by the triplet {s, a, r} must 
be availible to the agent
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Reinforcement learning
• The agent seeks to learn an association between 

situations (states) and actions to be taken 
given the environment in this situation:

• The agent's goal is to try to maximize the 
cummulative reward
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Reinforcement learning
• Example: A rat moving around in a maze

– If it finds food, it receives a positive 
reinforcement

– If it takes a wrong turn, a punishment is 
received:
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Q-learning
• Basic version of reinforcement learning:

– the set of states {si } and the set of actions (for each 
state) {ai } are finite.

• Consider an agent (robot) which is embedded in 
an environment:
– the agent determine the current state by taking 

measurements of the environment
– by taking actions, it can modify the state
– States:
– Actions: 
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Q-learning
• The agent receives a reward r for each action 

taken 
• Objective: to find a method (policy), P, that 

maximizes the total cumulative reward:

• Rewards obtained in the future is considered 
less important than immediate rewards:

• Thus, discount factor δ < 1 is introduced
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Q-learning

• An optimal policy Popt(s):
– a policy which maximizes RP(s(t))  for all 

states s.

• A quality function Q(s,a) is introduced:
– Q(s,a): the sum of the immediate reward 

when performing action a(t) and the value 
RPopt obtained by acting according to the 
optimal policy thereafter:
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Q-learning
• The task of maximizing the cumulative reward 

can now be reduced to the task of maximizing Q:

• However, only the immediate reward r(t) can be 
computed directly: 

• Computation of the second term would require 
knowledge of the optimal policy... 
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Q-learning
• A recursive equation for Q can now be 

obtained:

• An iterative learning method for Q which uses

   the present estimate Q of Q, is given by:
~
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Obtaining Q:
1. The elements of the matrix Q(s,a) are set to zero.
2. The state s(t) is sensed, and an action a(t) is 

taken: With probability p, the action that 
maximizes Q(s(t),a(t)) is taken (exploitation). 
With probability 1-p, a random action is taken 
(exploration).

3. When the new state has been reached, the 
estimate of Q is is updated according to:

~
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Convergence
• It can be shown that the iteration defined by

causes the estimate to converge to Q. 

• When the learning process has been completed, 
Q(s,a) generates the optimal action a to be taken in 
any state s (namely the action associated with the 
highest Q-value).
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Q-learning
• Learning is a trade-off between 

exploitation and exploration:

– If the action that is perceived as being 
optimal is always chosen (greedy policy) other 
actions cannot be discovered

– If an extreme exploration policy is used, not 
much reward will be obtained...
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Modified Q-learning
• A modified version of the learning algorithm is 

given by

where η (0< η <1) is a learning rate parameter: 
the smaller the value of η, the smaller the 
incremental modification of Q.~
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Q-learning (example)

• Consider a robot moving on the discrete grid shown in the 
figure:

• Immediate rewards: +10 if the goal is reached, -10 if an 
attempt is made to enter the blocked square.
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Q-learning (example)

• Initially, all Q-values are zero
• The robot move at random until the target T is reached or 

the robot tries to enter the blocked square. 
• The robot started at state s=3 and the training episode was 

completed when state s=13 was reached, by moving to the 
right from state 12. The Q-value of the previous state will 
then be updated according to:

• No other modifications of Q occur during this episode

~

~

~
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Q-learning (example)

• Consider Q(1,up):
Immediate reward is -10

• Optimal path is then
(in 5 steps):
1 -> 1 -> 2 -> 5 -> 9 -> 13

• Therefore: Q(1,up)=
-10 + 0.9410 = -3.4390

• (In the example, δ = 0.9 was used).
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Q-learning (example)

• This simple kind of reinforcement learning can be 
generalized to more realistic (continuous) cases. 
In such cases, the states and actions cannot normally be 
enumerated. Thus, instead of a matrix, Q can then be 
estimated using e.g. a neural network.

• Examples of applications: system identification, mechanics 
(balancing an inverted pendulum), game playing 
(backgammon) etc.
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Part II: Multi-robot applications
• Example:

– Division of Labour in a Group of Robots 
Inspired by Ants Foraging Behavior.

• Biologically inspired approach to robot 
control:
– Insects can co-operate efficiently:

• termites, bees, and ants.

– Model based on ants' foraging behavior.
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Collective insect behavior
• Insects have limited knowledge:

– No direct communication
– Only locally available information
– No internal map of the environment
– No sense of any "global plan"

• Still, insect behavior is amazingly robust in 
their natural environment!
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Collective insect behavior
• Result of collective insect behavior goes 

beyond that of individual insects.
– Key mechanism: Self organization!

• Why look at insects?
– Inspiration for robotics researchers.
– Multi robot systems experimental tool for 

biologists. 
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Collective robot behavior
• An object search and retrieval task

– control algorithm inspired by a model of ants' 
foraging behavior.

• Division of labour:
– robots co-operate in order to increase the 

efficiency of the group.

• Selection mechanism:
– robots more suited to a task are more likely to 

carry out the task, than less capable robots.
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Test application
• Prey retrieval task:

– look for objects, prey, retrieve objects to the 
nest.

• Similar to behavior observed in real ants.
• Used as model ´for real-world applications:

– search and rescue missions
– demining
– collection of terrain samples
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Performance
• Since the task can be accompliched by a single 

robot, is there an actual performance gain in 
using more than one robot?

• Are more robots more efficient, than a single 
one?

• Efficiency = performance of the group:
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Efficiency
• Income:

– prey retrieved to the nest.

• Cost:
– interferences among robots
– dangers in the environment
– energy

• Income and cost depend on the number of 
robots in the environment.

• What is the optimal number of robots?
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Ants' foraging behavior model
• Ants randomly explore the environment until one of 

them finds a prey:
– pull it to the nest;
– cut it;
– recruitment;

• The prey is pulled straight to the nest
• Ant returns directly to the prey location, after retrieval.
• Learning and adaptation migth play a key role:

– probability P1 to leave the nest for new search

– changes with a constant Δ, according to previous 
successes or failures.
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Methods
• Real robots

– validate a theoretical model

• Simulated robots
– more data can be produce in shorter time: 

speeds up the analysis.

• Leads to more general conlusions!
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Robots

 MindS-bot                        s-bot
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Control: finite state machine

• Cond. state transitions:
– When "label" is TRUE
– With prob. P1 once every second (+ Δ)
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Experimental set-up

• Prey appear randomly in the environment
• Single experimental parameter: adaptation
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Efficiency index
• Costs cannot easily be quantified.

• performance = # retrieved prey
• duty time = time spent in "search" or 

"retrieve"
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Experiments and results
• Efficiency (real and simulated robots):

– Increased significantly when using adaptation.

– No difference in performance obtained

=> improvement is due to decrease of group 
duty time.
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Experiments and results
• Division of labour occured:

– Two peaks in P1 indicate two distinct groups 
of robots: active foragers have high P1, and 
others have low P1 value.
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Conclusion
• Individual adaptation, which uses only 

locally availible information, can improve 
the efficiency of a group of robots by 
means of division of labour.
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About the exam
• Friday, 20080314, 08.30-12.30, V-building

• Allowed to bring a calculator, provided that it cannot store 
any text: Can be bought at Cremona (Chalmers’ bookstore).

• It is allowed to bring mathematical tables (such as e.g. 
Beta), as long as no text has been added.

• It is NOT allowed to bring any course material e.g. lecture 
notes, or to use other tools such as computers, cell phones 
etc.

• Make sure to bring a VALID ID!!
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About the exam

• The maximum score on the exam will be 25 points. 

• The exam will contain both mathematical problems and 
questions concerning the various topics covered in the 
lectures. You may be asked to derive (and use!) equations 
etc. 

• No programming-related questions in the exam, i.e. you will 
not be asked to write program code.

• The problems can be based on all the material rated as 
important in the Reading guidance files.
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Next quarter...
• The robot construction part starts (finally :-) ) on 

April 1st in ET-lab (Fundamental physics 
building)


