Learning and adaptive behavior in autonomous robots and Multi-robot applications

2008-03-07

Lecture 14

Literature for this lecture:

- **Wahde, M.** An introduction to adaptive algorithms and intelligent machines, p. 89-94 (distributed in the lecture)
- Additional reading: **Scherffig, L.** (2002): *Reinforcement learning in motor control.* http://www-lehre.inf.uos.de/~lscherff/bachelor/rlimc.pdf
- Labella T.H., Dorigo M., Deneubourg J.-L. (2006):
 Division of Labour in a Group of Robots Inspired by Ants'
 Foraging Behaviour.
 http://www.swarm-bots.org/index.php?main=2

Autonomous Agents 2008

Part I: Learning and adaptive behavior in autonomous robots

 Characteristic of autonomous robots: selfdevelopment and learning through interaction with its environment

- Algorithm(s) for a robot's "mental development":
 - Reinforcement learning, Q-learning

Learning

Supervised learning:

- Teaching through examples
- States of the environment: s
- Availible actions: a
- Set of training examples: {s, a}-pairs

Unsupervised learning:

- Biological organisms learn by trial-and-error
- Unknown situation: try some action, and observe the resulting state of the environment

RL motivation

- Thorndike, 1911: Law of effect:
 - Behaviors in animals which lead to reward are strengthened
 - Behaviors that result in *punishment* or discomfort are weakened
 - The amount of strengthening or weakening is proportional to the amount of reward or punishment

Reinforcement learning

- Reinforcement learning is an intermediate method, between unsupervised and supervised learning:
 - The agents action a in a given state s gives rise to a reinforcement signal r
 - Thus, during reinforcement learning the information given by the triplet {s, a, r} must be available to the agent

Reinforcement learning

 The agent seeks to learn an association between situations (states) and actions to be taken given the environment in this situation:

The agent's goal is to try to maximize the cumulative reward

Reinforcement learning

Example: A rat moving around in a maze

If it finds food, it receives a positive reinforcement

- If it takes a wrong turn, a punishment is

received:

- Basic version of reinforcement learning:
 - the set of states $\{s_i\}$ and the set of actions (for each state) $\{a_i\}$ are finite.
- Consider an agent (robot) which is embedded in an environment:
 - the agent determine the current state by taking measurements of the environment
 - by taking actions, it can modify the state
 - States: $S = (s_1, s_2, \ldots, s_n)$
 - Actions: $A = (a_1, a_2, \ldots, a_m)$

- The agent receives a reward r for each action taken
- **Objective:** to find a method (policy), P, that maximizes the *total cumulative reward*:

$$R_P(s(t)) = r(t) + r(t+1) +$$

 Rewards obtained in the future is considered less important than immediate rewards:

$$R_P(s(t)) = r(t) + \delta r(t+1) + \delta^2 r(t+2) + \dots$$

• Thus, **discount factor** δ < 1 is introduced

- An optimal policy $P_{opt}(s)$:
 - a policy which maximizes $R_P(s(t))$ for all states s.
- A quality function Q(s,a) is introduced:
 - **Q(s,a)**: the sum of the immediate reward when performing action a(t) and the value R_{Popt} obtained by acting according to the optimal policy thereafter:

$$Q(s(t),a(t)) = r(t) + \delta R_{P_{\mathrm{opt}}}(s(t+1)).$$

 The task of maximizing the cumulative reward can now be reduced to the task of maximizing Q:

$$R_{P_{\mathrm{opt}}} = \max_{\alpha} Q(s(t), \alpha).$$

 However, only the immediate reward r(t) can be computed directly:

$$Q(s(t), a(t)) = r(t) + \delta R_{P_{\text{opt}}}(s(t+1)).$$

 Computation of the second term would require knowledge of the optimal policy...

A recursive equation for Q can now be obtained:

$$Q(s(t),a(t)) = r(t) + \delta \max_{\alpha} Q(s(t+1),\alpha).$$

• An iterative learning method for Q which uses the present estimate \hat{Q} of Q, is given by:

$$\tilde{Q}(s(t),a(t)) \to \tilde{Q}'(s(t),a(t)) = r + \delta \max_{\alpha} \tilde{Q}(s(t+1),\alpha).$$

Obtaining Q:

- 1. The elements of the matrix Q(s,a) are set to zero.
- 2. The state s(t) is sensed, and an action a(t) is taken: With probability p, the action that maximizes Q(s(t),a(t)) is taken (**exploitation**). With probability 1-p, a random action is taken (**exploration**).
- 3. When the new state has been reached, the estimate of Q is is updated according to:

$$\tilde{Q}(s(t),a(t)) \to \tilde{Q}'(s(t),a(t)) = r + \delta \max_{\alpha} \tilde{Q}(s(t+1),\alpha).$$

Convergence

It can be shown that the iteration defined by

$$\tilde{Q}(s(t),a(t)) \to \tilde{Q}'(s(t),a(t)) = r + \delta \max_{\alpha} \tilde{Q}(s(t+1),\alpha).$$

causes the estimate to converge to Q.

When the learning process has been completed,
 Q(s,a) generates the optimal action a to be taken in
 any state s (namely the action associated with the
 highest Q-value).

- Learning is a trade-off between exploitation and exploration:
 - If the action that is perceived as being optimal is always chosen (greedy policy) other actions cannot be discovered
 - If an extreme exploration policy is used, not much reward will be obtained...

Modified Q-learning

A modified version of the learning algorithm is given by

$$\begin{array}{lcl} \tilde{Q}(s(t),a(t)) & \to & \tilde{Q}'(s(t),a(t)) \\ & = & (1-\eta)\tilde{Q}(s(t),a(t)) + \eta(r+\delta \max_{\alpha} \tilde{Q}(s(t+1),\alpha), \end{array}$$

where η (0< η <1) is a learning rate parameter: the smaller the value of η , the smaller the incremental modification of \tilde{Q} .

Consider a robot moving on the discrete grid shown in the

figure:

 Immediate rewards: +10 if the goal is reached, -10 if an attempt is made to enter the blocked square.

- Initially, all Q-values are zero
- The robot move at random until the target T is reached or the robot tries to enter the blocked square.
- The robot started at state s=3 and the training episode was completed when state s=13 was reached, by moving to the right from state 12. The Q-value of the previous state will then be updated according to:

$$\tilde{Q}(12, \mathrm{right}) \rightarrow \tilde{Q}'(12, \mathrm{right}) = r + \delta \max_{\alpha} \tilde{Q}(13, \alpha) = 10 + 0 = 10.$$

• No other modifications of \widetilde{Q} occur during this episode

- Consider Q(1,up):
 Immediate reward is -10
- Optimal path is then (in 5 steps):

• Therefore: $Q(1,up) = -10 + 0.9^410 = -3.4390$

State	Right	Up	Left	Down
1	7.2900	-3.4390		_
2	6.5610	8.1000	6.5610	_
3	5.9049	7.2900	7.2900	_
4	_	6.5610	6.5610	_
5	7.2900	9.0000	-1.9000	7.2900
6	6.5610	8.1000	8.1000	6.5610
7	_	7.2900	7.2900	5.9049
8	9.0000	9.0000	_	-1.9000
9	8.1000	10.0000	8.1000	8.1000
10	7.2900	9.0000	9.0000	7.2900
11	_	8.1000	8.1000	6.5610
12	10.0000	_	_	8.1000
13	_	_	_	_
14	8.1000	_	10.0000	8.1000
15	_	_	9.0000	7.2900

• (In the example, $\delta = 0.9$ was used).

- This simple kind of reinforcement learning can be generalized to more realistic (continuous) cases.
 In such cases, the states and actions cannot normally be enumerated. Thus, instead of a matrix, Q can then be estimated using e.g. a neural network.
- Examples of applications: system identification, mechanics (balancing an inverted pendulum), game playing (backgammon) etc.

Part II: Multi-robot applications

- Example:
 - Division of Labour in a Group of Robots
 Inspired by Ants Foraging Behavior.
- Biologically inspired approach to robot control:
 - Insects can co-operate efficiently:
 - termites, bees, and ants.
 - Model based on ants' foraging behavior.

Collective insect behavior

- Insects have limited knowledge:
 - No direct communication
 - Only locally available information
 - No internal map of the environment
 - No sense of any "global plan"
- Still, insect behavior is amazingly robust in their natural environment!

Collective insect behavior

- Result of collective insect behavior goes beyond that of individual insects.
 - Key mechanism: Self organization!
- Why look at insects?
 - Inspiration for robotics researchers.
 - Multi robot systems experimental tool for biologists.

Collective robot behavior

- An object search and retrieval task
 - control algorithm inspired by a model of ants' foraging behavior.
- Division of labour:
 - robots co-operate in order to increase the efficiency of the group.
- Selection mechanism:
 - robots more suited to a task are more likely to carry out the task, than less capable robots.

Test application

- Prey retrieval task:
 - look for objects, prey, retrieve objects to the nest.
- Similar to behavior observed in real ants.
- Used as model 'for real-world applications:
 - search and rescue missions
 - demining
 - collection of terrain samples

Performance

- Since the task can be accompliched by a single robot, is there an actual performance gain in using more than one robot?
- Are more robots more efficient, than a single one?
- Efficiency = performance of the group:

$$\eta = \frac{income}{costs}$$

Efficiency

- Income:
 - prey retrieved to the nest.
- Cost:
 - interferences among robots
 - dangers in the environment
 - energy
- Income and cost depend on the number of robots in the environment.
- What is the optimal number of robots?

Ants' foraging behavior model

- Ants randomly explore the environment until one of them finds a prey:
 - pull it to the nest;
 - cut it;
 - recruitment;
- The prey is pulled straight to the nest
- Ant returns directly to the prey location, after retrieval.
- Learning and adaptation migth play a key role:
 - probability P₁ to leave the nest for new search
 - changes with a constant Δ , according to previous successes or failures.

Methods

- Real robots
 - validate a theoretical model
- Simulated robots
 - more data can be produce in shorter time:
 speeds up the analysis.
- Leads to more general conlusions!

Robots

MindS-bot

s-bot

Control: finite state machine

- Cond. state transitions:
 - When "label" is TRUE
 - With prob. P_1 once every second (+ Δ)

Experimental set-up

- Prey appear randomly in the environment
- Single experimental parameter: adaptation

Efficiency index

Costs cannot easily be quantified.

$$\nu = \frac{performance}{\sum_{robots} duty \ time}$$

- performance = # retrieved prey
- duty time = time spent in "search" or "retrieve"

Experiments and results

- Efficiency (real and simulated robots):
 - Increased significantly when using adaptation.

- No difference in performance obtained
 - => improvement is due to decrease of group duty time.

Experiments and results

Division of labour occured:

 Two peaks in P₁ indicate two distinct groups of robots: active foragers have high P₁, and others have low P₁ value.

Conclusion

 Individual adaptation, which uses only locally available information, can improve the efficiency of a group of robots by means of division of labour.

About the exam

- Friday, 20080314, 08.30-12.30, V-building
- Allowed to bring a calculator, provided that it cannot store any text: Can be bought at Cremona (Chalmers' bookstore).
- It is allowed to bring mathematical tables (such as e.g. Beta), as long as no text has been added.
- It is **NOT** allowed to bring any course material e.g. lecture notes, or to use other tools such as computers, cell phones etc.
- Make sure to bring a VALID ID!!

About the exam

- The maximum score on the exam will be 25 points.
- The exam will contain both mathematical problems and questions concerning the various topics covered in the lectures. You may be asked to derive (and use!) equations etc.
- No programming-related questions in the exam, i.e. you will not be asked to write program code.
- The problems can be based on all the material rated as important in the Reading guidance files.

Next quarter...

 The robot construction part starts (finally :-)) on April 1st in ET-lab (Fundamental physics building)

