
Chapter 4
Evolutionary robotics

4.1 Introduction and motivation

The aim of evolutionary robotics (ER) is to use EAs to evolve robotic brains1

(or bodies, or both), rather than designing them by other means, e.g. by hand.
There are many reasons for using artificial evolution to generate robotic brains
[12], [13], one of the most important being that it is very difficult to design
such systems by hand in any but the simplest cases. In a non-controlled set-
ting, i.e. any realistic environment, there will always be many sources of noise,
as well as both stationary and moving obstacles and, perhaps, other robots
as well. Trying to predict which situations may occur in such an environ-
ment is a daunting task, and hand-coded robotic brains are therefore gener-
ally non-robust and prone to failure. On the other hand, properly evolved
robotic brains, i.e. those generated using either physical robots or simulations
involving realistic noise at all levels, are often able to cope quite well with their
environment, even though, in fairness, it should be mentioned that the robotic
brains evolved so far are quite simple compared to the ultimate goal of truly
intelligent machines. However, the complexity of evolved robotic brains is
steadily increasing, and EAs are now used not only for constructing simple be-
haviors, but also for generating complex systems for behavioral organization,
as will be discussed in Chapter 6. Furthermore, evolution (whether natural or
artificial) is often able to find solutions that are remarkably simple, yet difficult
to achieve by other means.

Another advantage with EAs in connection with robots, is that their ability
to function even with very limited feedback. This is important in robotics,
where it is often known what a robot should do, but perhaps not how it should

1As mentioned earlier, the term robotic brain will be used instead of the term control
system, since the latter term is indicative of the more limited types of systems considered in
classical control theory.

53

54 CHAPTER 4. EVOLUTIONARY ROBOTICS

Evaluate in
physical robot

Form individual

Assign fitness

Arena

All
individuals
evaluated?

No

Initialize population

Yes

Generate new population

Satisfactory
result obtained?

No

Yes
Terminate run

Validate results in
physical robots

Physics

Evaluate in
simulation

Figure 4.1: The flow of an ER investigation. Note that some steps, e.g. formation of individ-
uals and new populations, are shown in a strongly simplified way.

do it, e.g. in what order different behaviors should be activated, at what point a
task should be suspended in order to engage in self-preserving activities such
as obstacle avoidance etc. In other words, it is difficult to specify directly the
adequacy of any single action: Feedback is often obtained long after an action
is performed, resulting in a credit assignment problem, i.e. the problem of
assigning credit (or blame) to previous actions. EAs are very well suited to
this kind of problems, where only rather vague guidance can be given (an
example will be given below).

Of course, as with all methods, there are also some drawbacks with ER, one
of the most serious being that, in view of the many candidate robotic brains
that must be examined before a satisfactory one is found, it is usually required
to resort to the use of simulations, rather than evolving in actual, physical
robots. Making realistic simulations is indeed difficult, and there exists a real-
ity gap [17] between simulated and physical robots. However, it is possible to
overcome the reality gap, and the need for using simulations does not, in fact,
introduce fundamental limits on the results obtained from ER.

The flow of an ER investigation is shown in Fig. 4.1, and it is quite similar
to the flow of a general EA. The figure is simplified: The procedure of forming
individuals can involve anything from setting a few parameters to running a
complex developmental process, generating both the brain and the body of a
robot. The dashed arrows in the figure indicate a choice: As mentioned above,

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 4. EVOLUTIONARY ROBOTICS 55

in many ER investigations, simulations are used and, as indicated in the figure,
the evaluation of an individual requires simulating the physics of the arena in
which the evaluation takes place. The other option is to use actual, physical
robots, and, in this case, the most common approach is to generate individ-
uals in a computer, upload them one by one on a single robot, evaluate the
robot, and return its fitness. There are other approaches as well (not shown
in the figure), such as embodied evolution [9], [47], where the entire evolu-
tionary process takes place on a population of physical robots. Incidentally, if
evolution is carried out in physical robots according to the scheme shown in
Fig. 4.1, some restrictions are placed on the fitness measure, since it must be
possible for the robot to assess its fitness and return the result to the computer,
at least in cases where the EA is to operate without continuous human super-
vision. Thus, the fitness measure must be based on quantities that are readily
available to the robot, such as e.g. sensors readings, motor speeds etc. [10].

The final step in Fig. 4.1, i.e. the validation of the results in physical robots,
is perhaps the most important step. A robotic brain that only functions in
simulation is of little use. Note that validation should be carried out even if
the evolution has been performed using a single physical robot. This is so,
since all physical robots have individual characteristics. For example, there is
no such thing as two completely identical IR sensors, even if they come from
the same manufacturer and have the same product number.

If the validation does not give satisfactory results, there are two different
options, either to extend the EA run, or to attempt to adjust the robotic brain
(or body) by hand. A useful approach in extended runs may be to switch from
simulations to physical robots. Even a short extended run may then lead to
improved results [25].

4.1.1 A simple example

As a simple example of an ER investigation, the evolution of a simplified clean-
ing behavior will be studied. Consider an arena of the kind shown in the left
panel of Fig. 4.2. The large cylinder represents a simple, differentially steered,
simulated two-wheeled robot, whereas the smaller (stationary) objects are con-
sidered to be garbage, and are to be removed by the robot. The aim is to use an
evolutionary algorithm to generate a brain capable of making the robot clean
the arena.

Cleaning behavior in simulation

The first choice that must be made is whether to evolve robotic brains in sim-
ulation, or directly in hardware For the simple problem described here, the
choice was made to use simulated robots during evolution, and then attempt
to transfer the best robotic brain found in simulation to a physical robot.

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

56 CHAPTER 4. EVOLUTIONARY ROBOTICS

Figure 4.2: A simple, simulated cleaning robot (the large, circular object) in action. The
initial state is shown in the left panel, and the final state in the right panel.

Next, a representation must be chosen for the robotic brains. Ideally, the
EA should be given as much flexibility as possible but, in practice, some limi-
tations must generally be introduced. In this problem, the robotic brains were
represented as sequences of IF-THEN-ELSE rules as shown in Fig. 4.3 and
the EA acted directly on the rules rather than on a chromosomal encoding of
them. In the beginning of the ER simulation, the number of rules was small.
However, the EA was allowed to change the number of rules during the simu-
lation. The simulated robot was equipped with very simple sensors that could
distinguish garbage objects from walls, but not much more.

The next step in the application of an EA is to choose a suitable fitness
measure, i.e. a performance measure for the evolving robotic brains. In the
particular case considered here, the aim of the robot was to place the garbage
objects as far from the center of the arena as possible. Thus, the fitness measure
was simply chosen as the mean square distance, counted from the center of the
arena, of all the garbage objects at the end of the evaluation.

Furthermore, each robot was evaluated against several (usually five) differ-
ent starting configurations, with garbage objects placed in different positions,
to avoid a situation where the evolved robot would learn only to cope with a
given configuration.

Next, an EA was set up, in which a population of robotic brains (in the form
of rule sequences, as mentioned above) was generated. As the EA progressed,
evaluating robotic brains, and generating new ones using selection, crossover,
and mutations, better and better results were obtained. In early generations,
the simulated robots did little more than run around in circles near their start-
ing position. However, some robots were lucky enough to hit one or a few
garbage objects, thereby moving them slightly towards the walls of the arena.
Before long, there appeared robots that would hit all the garbage objects.

The next evolutionary leap led to purposeful movement of objects. Here, an

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 4. EVOLUTIONARY ROBOTICS 57

State 1 Rule 11 Rule 21
... Rule N1

State j

State M

...

State 2

...

Rule 12 Rule 22
... Rule N2

Figure 4.3: The structure of the robotic brains used in the cleaning robot. Each robotic brain
consisted of M states, as well as conditional jumps between the states. In this structure, if
a given rule is satisfied, a jump is made to the target state. Thus, for example if rule 11 is
satisfied, the robot will find itself in state j in the next time step. If no rule is satisfied, the
robot will remain in its current state. Rules take e.g. the form IF s > s0, where s is the reading
of a proximity sensor and s0 is (an evolvable) constant. Note that, for clarity, rules are only
shown for states 1 and 2 in the figure.

interesting method appeared: Since both the body of the robot and the garbage
objects were round, objects could not easily be moved forward; Instead, they
would slide away from the desired direction of motion. Thus, a method in-
volving several rules was found, in which the robot moved in a zig-zag fash-
ion, thus managing to keep the garbage object in front.

Next, robots appeared that were able to deliver a garbage object at a wall,
and then return towards the center of the arena in a curved, sweeping motion,
in order to detect objects remaining near the center of the arena.

Towards the end of the run, the best evolved robots were able to place all, or
almost all, garbage objects near a wall, regardless of the starting configuration.

4.1.2 Cleaning behavior in a Khepera robot

Needless to say, the aim of ER is to generate real, physical robots capable of
performing useful tasks. Simulation is a useful tool in ER, but the final results
should be tested in physical robots.

The simulations for the cleaning robot discussed above were, in fact, strongly
simplified, and no attempt was made to simulate a physical robot exactly. Nev-
ertheless, the best robotic brain obtained in the simulations was adapted for a
Khepera robot (see www.k-team.com) the adaptation consisting mainly of
rescaling the parameters of the robotic brain, such as e.g. wheel speeds and
sensor readings, to appropriate ranges. Quite amazingly, the evolved robotic

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

58 CHAPTER 4. EVOLUTIONARY ROBOTICS

brain worked almost as well in the Khepera robot as in the simulated robots.
Thus, in this particular case, the transition from simulation to real robots was
quite simple, probably due to the simplicity of the problem. However, despite
its simplicity, the problem just described still illustrates the power of EAs as a
method for generating robotic behaviors.

4.2 Issues in evolutionary robotics

Before one starts evolving a robotic brain for a given task, there are several
issues that must be considered. In this section, a brief introduction to (some of)
those issues will be given, and further descriptions will be given in connection
with the examples in the following section. There are many issues that will
not be covered, however, such as e.g. interactive evolution, in which the used
provides a subjective fitness measure to guide the EA, evolvable hardware
and reconfigurable hardware, where the EA is used for changing the structure
of the hardware, and co-evolution, i.e. simultaneous evolution of two (or
more) populations.

4.2.1 Selecting a representation

The choice of representation for the evolving robotic brains, i.e. whether to use
neural networks, finite-state machines, IF-THEN-ELSE-rules, or some other
architecture clearly influences the results that can be obtained. In the ER lit-
erature, a common choice, motivated by biological considerations, is to use
neural networks (ANNs).

However, ANNs also have several drawbacks. First of all, they essentially
function as black boxes and commonly defy attempts at interpretation. Sec-
ond, in a situation where, say, two elementary behaviors have been generated,
and a composite robotic brain (displaying both behaviors) is desired, it is not
evident how ANNs should be combined, mainly due to the distributed nature
of their computation. Of course, it is possible to maintain two separate neu-
ral networks in the robotic brain, and use some method for behavior selection
to activate the appropriate network (this topic will be considered further in
Chapter 6). However, in that case, some of the biological motivations for the
use of ANNs disappear.

In the author’s experience, more transparent representations, such as e.g. IF-THEN-ELSE-
rules, work quite well, in most cases, even though they may not be able to
provide the continuous input-output-mapping that ANNs do.

To summarize, it is difficult to make general statements concerning the op-
timal choice of representations for ER investigations, and the final choice for a
given investigation often involves a considerable amount of experimentation.

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 4. EVOLUTIONARY ROBOTICS 59

4.2.2 Fitness measures

Perhaps even more than the choice of representation, the results of an ER in-
vestigation are influenced by the choice of fitness measure, of which there are
many different aspects. Fitness measures can be divided into explicit and im-
plicit ones, the difference being that an explicit fitness measure attempts to
capture many details of the robot’s behavior, whereas an implicit one focuses
on the overall behavior of the robot. An example of the distinction between ex-
plicit and implicit fitness measures will be given in connection with the study
of simple navigation behaviors below. A related dichotomy is that of local and
global fitness measures (see the example on box-pushing below). A local fit-
ness measure is one in which the fitness of the robot is (in principle) adjusted at
each time step, depending on the actions taken by the robot, whereas a global
fitness measure only takes into account the initial and final situations (e.g. the
position of the robot).

Second, a distinction can be made between internal and external fitness
measures. An internal fitness measure uses only variables that are available
to the robot itself, such as e.g. the readings of its sensors, whereas an external
fitness measure may take into account other aspects (such as the exact position
of the robot) as well. The distinction is particularly important in the case of
evolution in hardware in which case the only information available normally
is that acquired by the robot (unless a human observer is available to assess
the performance of each evaluated robot).

A related issue concerns the number of tests carried out in the evaluation of
a particular robotic brain. As was indicated in the simple example above, it is
often crucial to carry out multiple tests in order to prevent the EA from finding
solutions that only take into account the particular conditions prevailing in a
given test.2

When several tests are used in the evaluation of a robotic brain, the prob-
lem of combining the results into one scalar measure (that can be used by the
EA) arises. Such combinations can be carried out in many different ways. A
common choice is to consider the average fitness favg (over the tests)

favg =
1

N

N
∑

i=1

fi, (4.1)

where N is the number of tests, and fi is the fitness value obtained in test i.
Alternatively, the minimum fitness

fmin = min
i

fi, (4.2)

2Of course, in realistic simulations of autonomous robots, there is noise present on many
different levels, making all tests slightly different. However, these differences may not be
sufficient to evolve general-purpose behaviors. In the simple cleaning example considered
above, the robot would easily adapt its motions to the particular locations for the garbage
object, if only one test were to be used.

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

60 CHAPTER 4. EVOLUTIONARY ROBOTICS

can be used. The advantage of the latter measure is that it focuses on the worst
performance of the robot, thus forcing the EA to find robotic brains capable of
solving the robot’s task in a general manner.

4.2.3 Simulations vs. evolution in actual robots

Evolving behaviors is often a time-consuming process, particularly in cases
where the evaluation of a single individual takes a long time. In general, an EA
needs at least several hundred evaluations (and sometimes thousands or even
millions) in order to arrive at a useful result. Thus, at a first glance, evolving
behaviors in simulation appear to be a more feasible approach than evolution
in hardware and simulations are indeed often used in ER. However, it is im-
portant to keep in mind that a simulation is, at best, only a caricature of the real
world and, at worst, an outright misrepresentation of it. This view has been
championed, among other, by Brooks [4], who takes a particularly pessimistic
view of the possibility of transferring results from simulations to reality. There
are several reasons for believing that simulations will not transfer well to re-
ality [25], a problem known as the reality gap [17]. First of all, it is difficult
to generate an accurate physical model of the world, including the motions
of real-world objects, variations in lighting etc. Second, real environments are
invariably noisy, on all levels. Thus, noise is present in sensor readings, actua-
tor signals, motion etc. Third, there is also a variation in supposedly identical
hardware components. For example, Miglino et al. [25] mention a measure-
ment on two sensors of the same type, in which it was found that the range of
one sensor was nearly twice as large as the other, and the diffence in angular
variation between the two sensors was also of the same magnitude.

Evolution in hardware

The obvious alternative to evolving behaviors in simulation is, of course, to
evolve in physical robots, and this approach has been used by many authors
(see e.g. [9], [10], [14], [47], [48]). However, evolution in hardware is also as-
sociated with numerous difficulties. First of all, the evaluation of individuals
generally takes longer time than in actual robots than in simulated robots (see
e.g. [10] or [14] for timing estimates). In order to arrive at a result in a reason-
able amount of time, it is therefore often necessary to resort to an EA with a
small population size, and to run it only for a small number of generations [48].
Second, supplying the robots with continuous power is an omnipresent prob-
lem: In real robots, the amount of available energy is finite, and so recharging
will be necessary at regular intervals. This problem can be overcome by the
introduction of a powered floor [9], or by requiring the robots periodically to
return to a charging station. Charging batteries is a rather slow process, but
the transfer of energy to robots can be speeded up using capacitors instead

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 4. EVOLUTIONARY ROBOTICS 61

of batteries [31]. Third, in many applications, e.g. the evolution of gaits for
bipedal robots, the evolutionary process must be monitored continuously.

The most common approach to evolution in hardware is to evaluate indi-
viduals in a serial fashion, uploading them one after the other in a single robot
[10], [30]. In this case, all evolutionary processes, such as e.g. reproduction
and formation of new individuals take place on a computer, and the resulting
individuals are then placed in the robot for evaluation.

An alternative method, called embodied evolution [9], [47] is to evolve a
population of real robots. In embodied evolution, infrared communication can
be used for exchanging genetic material between robots. Such exchanges take
place only when two robots are within infrared communication range. The
probability of a robot sending a gene, can be set proportional to its current per-
formance, and the probability of a robot accepting a gene from another robot
(and thus to overwrite its own gene), can be set proportional to one minus the
probability of sending the gene.

Improving simulations

The comparison between simulations and evolution in hardware shows that
there are advantages and disadvantages with both approaches. A substantial
amount of work has been carried out in order to improve the quality of sim-
ulations (see e.g. [15], [16], [17], [30], and [29]). Some of the most important
aspects to keep in mind when setting up ER simulations [17] is to (1) base the
simulation on empirical data, rather than e.g. artificial sensor models without
a real-world counterpart, (2) add the correct level of noise (see below) in all
parts of the simulation, (3) use a representation that is noise-tolerant, e.g. an
ANN.

Sensors can be implemented in several different ways in ER simulations.
One approach is simply to measure sensor readings on an actual robot, and
store them (for example, in a lookup table) for later use in a simulator [25],
[29]. Noise can be added in different ways, either by slightly perturbing the
measured sensor readings, or by using actual sensor readings taken from a
slightly different position and angle than that currently held by the robot, a
procedure called conservative position noise [25]. In this approach, sensor
readings must be taken at many different positions, rendering the procedure
quite time-consuming in all but the simplest environments. An alternative
approach is to set up a physical model of the sensors, and to determine the
values of the model parameters through system identification. For example,
Jakobi et al. [17] used this approach to model the IR sensors on a Khepera
robot. They used a ray tracing technique which in which n ray tracings were
carried out (in different directions), and the resulting sensor reading was then

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

62 CHAPTER 4. EVOLUTIONARY ROBOTICS

modelled as (cf. Chapter 1)

s =
n
∑

i=1

cos βi

(

a

d2
i

+ b

)

, (4.3)

where βi is the angle at which ray i emanates from the sensor, and di is the
distance to an object along the ray. a and b were determined empirically [17].

Jakobi et al. [17] also studied the effects of noise, and found that the small-
est performance difference between simulated robots and physical robots was
obtained when the noise level in simulations was set approximately equal to
the empirically determined noise level in the real world. Interestingly, it was
also found that, in simulations with high noise levels, simulated robots could
make use of noise to achieve good results in simulations that could not be re-
produced in physical robots, showing that noise levels should not be set too
high.

Jakobi [15], [16] has introduced a simulation procedure called minimal
simulations, which recognizes the inevitable discrepancies between the sim-
ulated and real worlds. Thus, in a minimal simulation, the various aspects
of the interaction between a robot and its environment are divided into base
set aspects and implementational aspects, where the former have a physi-
cal counterpart in the real world, whereas the latter do not. Thus, in a mini-
mal simulation, the implementational aspects should be varied randomly from
evaluation to evaluation, thus rendering them useless to evolution, and forc-
ing the EA to focus on the base set aspects. An evolved robotic brain that only
relies on base set aspects is called base set exclusive. In addition, a certain de-
gree of variation is introduced also in the base set aspects, in order to capture
the fact that even in the base set aspects there will be discrepancies between the
simulated and real worlds. A robot that can cope also with such discrepancies,
is termed base set robust.

Thus, summarizing, it is evident that the choice between evolution in sim-
ulation and evolution in hardware is a non-trivial one. Simulations have the
disadvantage of never being able to capture all aspects of the real world. How-
ever, carefully designed simulations will nevertheless lead to results that can
be transferred to physical robots. Indeed, one may, perhaps, consider the re-
sults obtained in a simulation as a first iteration toward the desired results.
Of course, a hybrid approach can be used, in which evolution is first carried
out in simulations and then briefly continued in hardware. Miglino et al [25]
report successful results from such an approach.

4.3 Evolving single behaviors

In this section, some examples of the evolution of single behaviors will be
given. However, already at this stage, it can be noted that the definition of

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 4. EVOLUTIONARY ROBOTICS 63

Figure 4.4: The environment used in the evolution of navigation in [10]. Reproduced with
kind permission of Prof. D. Floreano.

behaviors is somewhat fuzzy. For example, in the first example below, i.e. the
evolution of navigation, it is normally required that the robots be able not only
to move, but also to avoid collisions. Thus, the question of whether to con-
sider motion without collisions as a single behavior or as a combination of two
behaviors arises. However, in this particular example, the two aspects of the
robot’s behavior - motion and obstacle avoidance - are so closely integrated
with each other, and can rather easily be achieved through a clever choice of
fitness function, that they can perhaps be considered as part of a single behav-
ior.

While the examples are hopefully interesting in their own right, the reader
should pay attention to a few particularly important aspects of any application
of ER, namely (1) the representation used for the evolving systems, (2) the level
of complexity of the simulator (if applicable), and (3) the fitness measure used
in the simulations.

4.3.1 Navigation

Navigation, i.e. the problem of moving in an environment without colliding
with obstacles, is clearly a basic competence of any robot, and it has been stud-
ied extensively in the ER literature [10], [24], [36].

Basic navigation

In [10], Floreano and Mondada evolved basic navigation. The authors specif-
ically pointed out the difficulties in constructing accurate simulations, and
chose instead to evolve navigation behavior in a real Khepera robot. The aim
was to evolve collision-free navigation in an environment with stationary ob-
stacles, shown in Fig. 4.4. In the experiments, the authors used a simple, fixed-
length chromosome to encode the weights of neural networks of fixed struc-
ture. The networks consisted of a single layer of synaptic weights, connecting
the 8 IR sensors of the Khepera robot to two output neurons, connected to the

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

64 CHAPTER 4. EVOLUTIONARY ROBOTICS

motors. In addition, recurrent connections were introduced within the output
layer.

The fitness contribution for each time step during the motion of the robot
was chosen as

Φ = V
(

1 −
√

|∆v|
)

(1 − i), (4.4)

where V denotes the average rotation speed of the wheels, ∆v is the difference
between the (signed) speeds of the wheels, and i is the value of the IR sen-
sor with the highest reading. V , |∆v|, and i were all normalized to the range
[0, 1], so that Φ also was constrained to this range. The complete fitness func-
tion f was obtained by summing the values of Φ obtained for each time step,
and then dividing the results by the number of time steps. The same fitness
measure was used also by Nolfi et al. [29].

The first factor (V) in Eq. (4.4) promotes high speed, whereas the second

factor, 1−
√

|∆V |, promotes straight-line motion, and the third factor (1− i) re-
wards obstacle avoidance. Note that the different factors in the fitness measure
counteract each other, to some extent. For example, the environment was such
that the robot was required to turn quite often in order to avoid collisions, even
though the second factor in the fitness measure would discourage it to do so.
This is an example of what could be called an explicit fitness measure, since
explicit punishments (in the form of a reduced increase in fitness) are given if
the speed is low, if the robot does not move in a straight line, or if the robot
approaches an obstacle. The alternative is to use an implicit fitness measure
for some of the aspects of the robot’s motion. For example, in [17], Jakobi et al.
used a fitness measure similar to the one given in Eq. (4.4), but without the
factor (1− i), since it was found that this factor is unnecessary in a sufficiently
cluttered environment, where obstacle avoidance is an implicit requirement
for any form of motion.

Floreano and Mondada report that the best evolved robots successfully
navigated through their environment, and that some robots also showed in-
telligent behavior beyond what was explicitly encoded in the fitness function.
For example, some of the best robots learned to modulate the speed, keeping
it at around three quarters of the maximum allowed speed in the vicinity of
obstacles.

While evolving robotic behaviors in hardware has obvious advantages, a
possible disadvantage is that it is often quite time-consuming. Indeed, in the
experiments reported in [10], each generation lasted around 40 minutes. In
order to evolve successful robots, around 50-100 generations were needed.

In addition to basic navigation, Floreano and Mondada also evolved hom-
ing navigation, in which the robot was required periodically to recharge its
(simulated) batteries. However, this was a more complex task, and it will be
considered in Chapter 6.

While some recurrent connections were included in the output layer of the

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 4. EVOLUTIONARY ROBOTICS 65

Figure 4.5: The maze used by Nelson et al. [27] for the evolution of navigation, reproduced
with kind permission of the authors. The figure shows some results obtained in simulation.
Qualitatively similar results were obtained using a physical robot, EvBot, shown in Fig. 4.6.

Figure 4.6: The EvBot robot used in [27]. The robot is equipped with an array of tactile
sensors, and can also be fitted with other sensors, such as video cameras. Reproduced with
kind permission of Nelson et al.

neural networks used in [10], Nelson et al. [27] made more explicit use of tem-
poral processing of information, motivated by the fact that robots commonly
show suboptimal performance using reactive behaviors based on very poor
sensory inputs.

Thus, Nelson et al. considered neural networks with several layers con-
taining recurrent couplings as well as time-delayed couplings. The neural net-
works were evolved in simulations involving robots equipped with 5 simple
tactile sensors. The task of the simulated robots was to navigate in a maze,
shown in Fig. 4.5. The fitness measure was taken essentially as the distance
travelled, with a penalty for situations in which the robot became stuck.

It was indeed found that robots equipped with memory, in the form of
recurrent couplings and time-delay elements, performed the navigation task

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

66 CHAPTER 4. EVOLUTIONARY ROBOTICS

better than purely reactive robots. The best results were obtained for networks
of moderate complexity, containing 1-3 hidden layers with 5-10 neurons per
layer. The best networks obtained during evolution were transferred, with
retained functionality, to an actual robot (EvBot, shown in Fig. 4.6), equipped
with five tactile sensors.

Wandering behavior

Miglino et al. [24] evolved an exploratory behavior (also called wandering) in
simulations. The resulting behaviors were then tested in actual (Lego) robots.
In this case, the brains of the robots were represented by very simple neural
networks, with two inputs from a front sensor and a rear sensor, two hidden
units, and two outputs controlling the two motors. In addition, a single mem-
ory neuron was used, connecting the hidden layer to itself through a recur-
rent coupling. All signals were binary (a Heaviside step function was used
as the threshold function in the neurons), and the simple neural networks
used in this study could, in fact, be represented as finite-state machines or
IF-THEN-ELSE-rules.

In order to achieve wandering behavior, the authors used a fitness measure
which rewarded movements that would take the robot to locations where it
had not been before. The robot was placed in an arena of size 2.6× 2.6 meters,
consisting of squares with 10 cm side length. The central 20 × 20 square had
white color, and the remaining squares were black, so that the robot could
determine whether or not it was close to a boundary.

The fitness of the evolving robotic brains was incremented by one every
time the robot visited a square it had not previously visited, and the final fit-
ness measure was taken as the fraction of squares visited.

An important issue in ER is the fact that an EA will try to exploit the par-
ticularities of the encountered situations as much as possible. Thus, in the
evolution of wandering behavior, if a single starting position was used in all
evaluations, the EA would quickly find a way to optimize the motion of the
robot based on the given starting position. In order to avoid such problems,
Miglino et al. evaluated each robotic brain 10 times, starting from a random
location in the grid.

The authors report that the best evolved robotic brains managed to make
the corresponding robot visit an average of slightly more than half of the avail-
able squares. The evolutionary process exhibited three clear stages, during
which the maximum fitness was essentially constant. The stages corresponded
to different levels of complexity. For example, in the first stage, the evolved
neural networks made no use of the memory unit, whereas in the second stage
they did.

The neural networks obtained in the simulations where then implemented
in actual Lego robots. While the behaviors of the actual robots were similar to

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 4. EVOLUTIONARY ROBOTICS 67

those of the simulated ones, there were some clear differences, some of which
were attributed to noise (absent in the simulations). Thus, some simulations
were made with noise added, and it was found that a closer correspondence
between the behavior of real robots and simulated robots could be found if the
latter were evolved at intermediate levels of noise.

4.3.2 Box-pushing

Simple Box-pushing can be used as a metaphor for behaviors needed, for in-
stance, in transportation robots, and it has been investigated by several au-
thors, e.g. [20], [40], [39], [49]. The results from two such investigations will
now be discussed briefly.

Single-robot box pushing

Lee et al. [20], evolved box-pushing in simulations, and transferred their re-
sults onto a Khepera robot. In order to reduce the differences between simu-
lations and real-world implementations of box-pushing, the authors used the
interesting approach of sampling the actual sensors on the Khepera, storing the
results in lookup tables that were then used in the simulations. In the simula-
tions, the task of the robot was to push a small box towards a light source.

In fact, the simulations reported in [20] involved the evolution of organi-
zation of two behaviors, namely box-pushing and box-side-circling. The latter
behavior was used in order to place the robot in the correct direction, so that
it could use the box-pushing to move the box toward the light source. Here,
however, only the box-pushing behavior will be discussed, behavioral organi-
zation being deferred to Chapter 6.

Lee et al. used GP to evolve tree-like structures achieving box-pushing,
using the readings of the 8 IR sensors on the Khepera as input. The authors
used the measure

e =
T
∑

t=1

α (1 − s(t)) + β (1 − v(t)) + γw(t), (4.5)

where s(t) denotes the average of the normalized activations of the two front
sensors (sensors 2 and 3) on the (simulated) Khepera robot, v(t) the normal-
ized forward speed of the wheels, and w(t) the normalized speed difference
between the two wheels. Note that the measure e should be minimized, and
is thus an error measure rather than a fitness measure in the traditional sense.
However, an EA can of course easily be modified to strive to minimize an ob-
jective function. The measure e penalizes low activation of the front sensors
(i.e. loosing the object), low speed, and curved motion.

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

68 CHAPTER 4. EVOLUTIONARY ROBOTICS

b 0 1 2 0-1 4-5 6-7... ...7

Figure 4.7: The left panel shows a schematic view of the environment used by Sprinkhuizen
et al. [39] in the evolution of box-pushing behavior. Note the light source placed at the end of
the corridor. The right panel shows the structure of the FFNNs used.

The EA used by Lee et al. made use of subpopulations in order to maintain
the diversity of the population, and thus to avoid costly computations of al-
most identical individuals. Successful box-pushing behavior was achieved in
50 generations, using a total population size of 100.

Sprinkhuizen-Kuyper et al. [39] evolved box-pushing in simulations, using
a Khepera simulator involving a slightly more complex environment (see the
left panel of Fig. 4.7) containing walls. In this case a simple, one-layer, FFNN
was used to represent the brain of the simulated robots. However, in addition
to the 8 input signals provided by the IR sensors and a bias signal, the authors
added six simple edge detectors, consisting simply of the differences between
the readings of adjacent sensors, as shown in the right panel of Fig. 4.7. All
15 input signals were connected directly to the two outputs, which, in turn,
provided the motor signals. Sprinkhuizen-Kuyper et al. noted that the fitness
of an individual can be defined in several different ways, and the concepts of
global, local, internal, and external fitness measures were employed. A global
fitness measure was defined as one only taking into account the difference be-
tween the final state and the starting state of the robot, in a given evaluation,
whereas a local fitness measure assesses a robotic brain based on its perfor-
mance at each time step. An internal fitness measure was defined as one only
based on the information available to the robot, through its sensors, whereas
an external fitness measure is based on information that is not directly avail-
able to the robot, such as e.g. its position. The authors defined four fitness
measures, using all possible combinations, i.e. global external, global internal,
local external, and local internal. For example, the global external fitness mea-
sure was defined as

fGE = d(BT , B0) −
1

2
d(BT , RT), (4.6)

where d(BT , B0) denotes the difference in position of the box between the final

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 4. EVOLUTIONARY ROBOTICS 69

Figure 4.8: A schematic illustration of the 10 different attack directions used by Lazarus and
Hu in the evolution of a soccer goalkeeper [19].

state (at time T) and the initial state, and d(BT , RT) is the difference in position
between the box and the robot at the final state. The second term was intro-
duced as a penalty for robots that did not keep pushing the box until the end
of the simulation. The local external fitness measure instead used a sum of
terms similar to those given in Eq. (4.6). The global internal fitness measure
required the introduction of lights, so that the robot could distinguish good
locations from bad ones. Finally, the local internal fitness measure was taken
as that used by Lee et al. [20].

Robotic brains were evolved using each of the four fitness measures. Next,
each robotic brain was tested for its performance based on the other three fit-
ness measures. It was found that the best performance was obtained with
the global external fitness measure, indicating that the best performance is ob-
tained when the EA is allowed to explore its search space quite freely, without
risking a penalty for occasional bad moves. The local internal fitness measure
did not do very well, however, and its failure was attributed to the fact that
this fitness measure would reward robots pushing against a wall (with sliding
wheels). The final results were succesfully implemented in a Khepera robot.

4.3.3 Behaviors for robot soccer

In recent years, there has been a great interest in robot soccer, manifested in
events such as the Robocup tournament (see www.robocup.org). Robot soc-
cer, or indeed any two-person (or two-team) game for robots, leads to inter-
esting questions concerning not only evolution of behaviors in general, but
also multi-robot coordination, co-evolution etc. Research on this topic has re-
sulted in a very large number of publications, and only a few brief examples
will be given here. The interested reader is referred to www.robocup.org or
www.fira.net for further information.

The ultimate aim of Robocup is to generate a team of (humanoid) robotic

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

70 CHAPTER 4. EVOLUTIONARY ROBOTICS

football players, capable of beating the best human team, a seemingly distant
goal. In addition to humanoid robot soccer, wheeled robots and simulated
robots have been used as well in the framework of Robocup. In [19], Lazarus
and Hu evolved goalkeeper behavior in simulations using GP. In the simula-
tions, the function set included the standard operators of addition (add), mul-
tiplication (mult) etc., as well as problem-specific operators such as e.g. kick
and catch. The terminal set included e.g. the direction to the ball and the dis-
tance to the ball. Each individual goalkeeper robot was tested against attacks
from 10 different directions, as shown schematically in Fig. 4.8. An attack con-
sisted of the attacker kicking the ball in a straight line toward the goal. The
authors attempted to evolve active goalkeepers, that would not only catch an
incoming ball, but would also attempt actively to move toward the ball and in-
tercept it. To this end, a fitness measure involving five parts, namely ball sav-
ing, self-localization, ball localization, movements, and positioning was used.
When using a multimodal fitness measure, the problem of weighing different
fitness cases against each other always appears. In [19], it turned out that the
best results were found using equal weights.

In [46], simple ball-following behavior was evolved, also using GP and em-
ploying several (in this case, 8) different trials in order to evolve robust solu-
tions. Luke et al. [21] used co-evolution to evolve a simulated robot soccer
team.

4.3.4 Motion of a robotic arm

As mentioned earlier, BBR (and therefore ER) is mostly concerned with auto-
nomous robots. However, ER has also been used in connection with stationary
robots such as robotic arms. An example of such an application is reported
in [26], where obstacle avoidance was evolved for an OSCAR-6 robotic arm.
The authors noted that, while basic manipulator-eye coordination had been
obtained using neural networks trained in a supervised manner (using, for
example, backpropagation), such approaches are mainly useful in structured
environments without obstacles. In supervised training, the neural network
must generally be given feedback for each input-output mapping, something
which is difficult to provide e.g. in obstacle-filled environments. Thus, Mori-
arty and Miikkulainen [26] used an EA to evolve neural networks for control-
ling the robotic arm, guiding the search by means of a single fitness measure
at the end of each evaluation, rather than providing the neural network with a
detailed performance measure for every single motion carried out.

The task of approaching a target was divided into two phases, an initial ap-
proach phase phase, which brought the end effector to the vicinity of the tar-
get, and a final approach phase which used smaller movements to reach within
grasping distance of the target. Based on this division, the authors devised a

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 4. EVOLUTIONARY ROBOTICS 71

control system consisting of two neural networks, a primary network for the
initial approach phase, and a secondary network for the final approach phase.
Each network was represented as a fully connected FFNN, with 9 input units,
a single hidden layer with 16 neurons, and 7 output neurons. The 9 input units
consisted of 6 proximity sensors, as well as the x, y, and z components of the
distance between the end effector and the target. Six of the output units were
used for determining the direction of rotation and magnitude of rotation for
three joints in the robotic arm. The output units determining the magnitude
of rotation were scaled differently in the primary and secondary networks, in
such a way that the motion of the secondary networks used smaller steps. The
seventh output unit was used to override the output of the other six outputs,
and thus to stop the arm, in emergency situations.

The training of the arms was made by starting the arm with random joint
positions, and a random target position, selected from a set of 400 pre-generated
positions. An additional 50 target positions were generated for use during test-
ing. In addition, obstacles were placed in one of 12 imaginary boxes located
in the path of robotic arm. The motion was executed as a series of discrete
moves, and simulations were terminated e.g. if a collision occurred. Fitness
was assigned as the percentage of the initial distance (between the position of
the end effector and the target) covered during the motion.

The results of the EA showed that the combination of primary and sec-
ondary networks could, in fact, control the arm to within industry standards,
i.e. with a deviation of one cm or less between the actual and desired end ef-
fector positions. Furthermore, using the 50 test cases, it was shown that the
evolved solutions were robust; Obstacles were hit only in around 2% of the
test cases.

4.4 Evolving behaviors with ERSim

There are several program packages available for evolving robotic behaviors.
An example is the UFLib package [42], which is used mainly for evolution-
ary optimization of the selection (for activation) of behaviors. In this course,
however, we will used a slightly simpler simulator, called ERSim, which is
based on the ARSim autonomous robot simulator introduced in Chapter 1 and
Appendix A.

4.4.1 A simple example

As a very simple, illustrative example of the use of ERSim, consider the evolu-
tion of fast straight-line navigation. Specifically, consider a robotic brain which
simply assigns constant values to the motor signals used as input to the motors

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

72 CHAPTER 4. EVOLUTIONARY ROBOTICS

Initialize population

Decode chromosome

CreatePopulation

CreateBrainFromChromosome

Create robot
CreateStandardRobot

Generate arena
CreateArena

Create simulation
CreateSimulation

Run simulation
RunSimulation

Assign Fitness
GetFitness

All individualsNo

Make new generation
MakeNewGeneration

Yes
Evaluated?

Figure 4.9: The flow of an ERSim simulation. In each box, the bottom row shows the name
of the corresponding Matlab function.

of the (differentially steered) robot, i.e.

sL = s1, (4.7)

sR = s2, (4.8)

where s1 and s2 are constants. Clearly, achieving straight-line navigation is
trivial: All that needs to be done is to set s1 = s2 = s0, for some value of s0. In
order to maximize speed, the value of s0 should, of course, be chosen as large
as possible. Even though the problem is trivial, it is sufficient for illustrating
the ERSim program and the example has therefore been included in the default
version of ERSim.

The general flow of the program is illustrated in Fig. 4.9 (for a more de-
tailed description, see Appendix B). In the straight-line navigation example,
the chromosomes consist of two real numbers, in the range [0, 1]. In the de-
coding procedure the numbers are converted to constants in the range [−1, 1],
which are then used as motor signals. The robot starts at rest in (x, y) = (0, 0),
heading in the positive x-direction. The fitness measure is simply taken as the
distance moved in the x-direction.

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 4. EVOLUTIONARY ROBOTICS 73

2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

generation

fit
ne

ss

Figure 4.10: The maximum (solid curve) and average fitness values obtained for the first 20
generations in a run of the straight-line navigation example.

The two curves in Fig. 4.10 show the maximum and average fitness values
for the first 20 generations of a run with a population size of 10. Note that the
average fitness oscillates quite wildly, since the mutation rate was set to a very
high value (0.50). The best individual found near-equal values, close to 1, of
the two motor signals.

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

74 CHAPTER 4. EVOLUTIONARY ROBOTICS

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

