
Chapter 5
Utility and rational decision-making

The ability of making appropriate decisions in any given situation is clearly a
necessary prerequisite for the survival of any animal and, indeed, even simple
animals are generally able to take the correct action even in difficult situa-
tions, provided that they are operating in their natural environment. While
the concept of rational decision-making has been studied in ethology (and,
more recently, in robotics), the theory of rational decision-making was formal-
ized within the framework of economics, particularly in the important work
by von Neumann and Morgenstern [28]. Their work also remains one of the
cornerstones of game theory.

The choices facing a decision-maker within the framework of economics,
can often be illustrated by means of lotteries, at least in cases where the num-
ber of consequences (or outcomes) is finite. Intuitively, one may think that the
expected payoff, i.e. the amount of money that is likely to be gained by partic-
ipating in the lottery, may determine a person’s inclination to do so. However,
things are a bit more complicated than that. As a first example, consider a
lottery in which, with probability p1 = 0.5 one would gain $3 (i.e. with the
consequence c1 = +$3), say, and, with probability p2 = 1−p1, one would have
to pay $2. (outcome c2 =-$2). Thus, the expected payoff from this bet would
be

P = p1c1 + p2c2 = 0.5 × 3 − 0.5 × 2 = 0.5. (5.1)

Thus, it is likely that most people would accept this bet since the expected pay-
off is larger than zero. However, consider now a lottery with the same proba-
bilities p1 and p2, but with the consequences c1 =$300,000 and c2 =-$200,000.
In this case, the expected payoff would be $50,000, a considerable amount of
money, yet most people would be disinclined to accept the bet, given the risk
of losing $200,000.

As a second example, consider a situation where a person must carry out
a potentially lethal task in order to gain $10,000. If the person’s total wealth is
$0 it is possible that he would accept the task, regardless of the risk. On the

75
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other hand, if the person’s total wealth is $1,000,000, it would hardly be worth
taking any risk for a measly additional $10,000. Thus, clearly, the amount that
can be gained is not the sole determinant, or even the most important one,
when contemplating what action to take in the situations just described.

5.1 Utility

In order to underline further the fact that the expected payoff alone is not
what determines one’s inclination to accept a bet, consider a repeated lottery
in which a fair coin (equal probability for heads and tails) is tossed repeat-
edly, and where the player receives 2k dollars if the first head, say, occurs after
k tosses of the coin. The probability pk of this event occurring equals (1/2)k.
Thus, the expected payoff from playing this lottery would be

P =
∑

pkck =
1

2
21 +

1

4
22 + . . . +

(

1

2

)k

2k + . . . , (5.2)

which is infinite! Thus, if the expected payoff P was all that mattered, a player
should be willing to pay any sum of money, however large, in order to partic-
ipate in this lottery, since the expected payoff would be larger. Clearly, some-
thing is wrong here: expected payoff is not, by itself, sufficient to determine
a player’s behavior. The situation just described is called the St. Petersburg
paradox, and was formulated by Bernoulli. He a proposed a way of resolving
the paradox, by postulating that it is not the expected payoff, in itself, that de-
termines a player’s behavior, but rather his perception of the amount of money
gained. Bernoulli postulated that the subjective value of $ N equals log10 N .
Thus, if this is the case, the subjective value of the outcome of the lottery would
be
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2
log10 2 +

1

4
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(
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2

)k

log10 2k + . . . , (5.3)

which is finite (and equal to 0.60206). The subjective value of a certain amount
of money, set arbitrarily to the logarithm of the amount by Bernoulli, is a spe-
cial case of the concept of utility, which can be used for weighing different
situations against each other and, thus, to decide which action to take.

In fact, it has been proven (rigorously) by von Neumann and Morgenstern
[28] that, given certain assumptions that will be listed below, there exists a
utility function which maps members ci of the set of outcomes to a numerical
value u(ci), called the utility of ci, which has the following properties:

1. u(c1) > u(c2) if and only if the person prefers1 c1 to c2,

1If (and only if) the person is indifferent between c1 and c2, then u(c1) = u(c2).
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2. u is affine, i.e.

u (pc1 + (1 − p)c2) = pu(c1) + (1 − p)u(c2), (5.4)

for any value of p1 ∈ [0, 1].

Furthermore, as shown by von Neumann and Morgenstern, u is unique up to
a positive linear transformation, i.e. if a function v also describes a person’s
preferences, then v = α1u + α2, where α1 > 0.

Clearly, there is no unique set of preferences, valid for all persons: one per-
son may prefer a consequence c1 to another consequence c2, whereas another
person’s preferences may be exactly the opposite. Thus, utility tells us noth-
ing about a person’s preferences. However, it does tell us that, given that the
preferences can be stated in a consistent way (see below), there exists a func-
tion u which can serve as a common currency in decision-making, i.e. when
weighing different options against each other.

As previously mentioned, the existence of a utility function with the prop-
erties listed above depends on certain axioms, namely

Axiom 1 (Ordering) Given two outcomes c1 and c2 an individual can decide,
and remain consistent, concerning his preferences, i.e. whether he prefers c1 to
c2 (denoted c1 > c2), c2 to c1, or is indifferent (denoted c1 ∼ c2).

Axiom 2 (Transitivity) If c1 ≥ c2 and c2 ≥ c3 then c1 ≥ c3.

Axiom 3 (The Archimedean axiom) If c1 > c2 > c3, there exists a p ∈ [0, 1]
such that pc1 + (1 − p)c3 > c2 and a q ∈ [0, 1] such that c2 > qc1 + (1 − q)c3.

Axiom 4 (Independence) For all outcomes c1, c2, and c3, c1 ≥ c2 if and only if
pc1 + (1 − p)c3 ≥ pc2 + (1 − p)c3 for all p ∈ [0, 1].

If these four axioms hold2 it is possible to prove the existence of a utility func-
tion with the properties listed above (the proof will not be given here). How-
ever, most decision-making situations involve uncertainty, i.e. many different
outcomes are possible. Such situations can also be handled, since it follows
(not completely trivially, though, at least not for the most general case) from
the utility function properties listed above that the expected utility U(c) of a
mixed consequence c = p1c1 + p2c2 + . . . pncn, where pk is the probability for
consequence ck, is given by

U(c) =
∑

pku(ck), (5.5)

2Note that von Neumann and Morgenstern used slightly different axioms, which, however,
amounted to essentially the same assumptions as those underlying axioms 1-4 listed here.
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so that a consequence cI =
∑

pkck is preferred to another consequence cII =
∑

qkck, if and only if U(cI) > U(cII).
Returning to the axioms above, it should be noted that none of them is

trivial, and they have all been challenged in the literature. For example, the
ordering and transitivity axioms may be violated in cases where a person has
very vague preferences among a certain set of outcomes, or (more importantly)
where the outcomes differ considerably in their implications, making it hard
to express clear preferences.

The Archimedean axiom also leads to problems when some of the out-
comes are extremely negative. For example if c1 consists of winning $2, c2

consists of winning $1, and c3 means that the person is killed, it is quite evi-
dent that c1 > c2 > c3. Thus, by axiom 3, there must be a value of p such that
pc1 +(1−p)c3 > c2, or, in other words, that the individual faced with the conse-
quences c1, c2, and c3 would prefer the possibility (however small) of death to
the prospect of winning $1 with certainty, if only the probability of winning $2
is sufficiently close to 1. Given the small amounts of money involved it seems,
perhaps, unlikely that one would accept even the slightest risk of being killed
in order to gain a measly $2. On the other hand, people do accept risking their
lives on a daily basis, for example by driving a car, in order to gain time (or
money).

If the four axioms are accepted, however, the resulting utility function can
be used as a powerful tool in decision-making. In order to do so, one must first
be able to construct the utility function, a procedure that will now be described
by means of an example. Consider a case in which a young man (A) in a bar
is contemplating whether or not to approach a beautiful young woman sitting
at the counter. He envisions two possible consequences: Either c1, in which
the girl is single and falls in love with him3, or c2 in which she is not single
and where A will be severely beaten by her jealous boyfriend. Clearly, c1 is
preferable to c2, and let us suppose that A has assigned utilities4 such that
u(c1) = 5 and u(c2) = −10. By the affinity property of the utility function, the
expected utility of the mixed consequence cm where, say, the probability p of
c1 is 0.2 and the probability q = 1−p of c2 is 0.8 (it is assumed no other potential
consequences exist, once the decision to approach the young woman has been
made) equals

U(cm) = U(pc1 + qc2) = pu(c1) + qu(c2) = 0.2 × 5 + 0.8 × (−10) = −7. (5.6)

Using the same procedure, utility values can be derived for any mixed conse-
quence (i.e. for any value of p ∈ [0, 1]). Next, consider the consequence c of not
approaching the young woman at all, and living with the knowledge of not

3The latter part of the consequence does not logically follow from the former, but for (con-
siderable) simplicity, it will be assumed that this is the case nevertheless.

4The exact numerical values do not matter, as long as u(c1) > u(c2).
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having tried. Clearly c1 is preferred to c and, unless A is hopelessly in love, c
is preferred to c2. Thus,

u(c1) > U(c) > u(c2), (5.7)

but how should U(c) be determined? Because of the affinity property of the
utility function, it is clear that there exists some value of p such that

U(c) = U(pu(c1) + (1 − p)u(c2)) = pu(c1) + (1 − p)u(c2). (5.8)

Thus, in other words (and by the first property of the utility function), given
some time to think, A will come up with a value of p at which he is indifferent
between the mixed consequence pc1 + (1 − p)c2 and c. Let’s say the point of
indifference occurs at p = 0.1. Then

U(c) = 0.1 × 5 + 0.9 × (−10) = −8.5. (5.9)

Thus, the expected utility for the consequence c has now been determined, and
the expected utility of any other consequence preferred to c2 but not to c1 can
be computed in a similar way. Note that there is no right answer - the exact
shape of the utility function depends on A’s preferences. For example, if he
were more cautious, he would perhaps conclude that the point of indifference
occurs at p = 0.5 rather than p = 0.1, in which case U(c) = −2.5.

As a more formal example, consider a lottery in which a person (B) is in-
different between the consequence c30 of a certain gain of $30 and a the mixed
consequence of gaining $100 with probability p = 0.5 and gaining nothing
with probability p = 0.5. Assume further that B has assigned utility u(c0) = 0
and u(c100) = 1 to the consequences of gaining $0 and $100, respectively. Sim-
plifying the notation somewhat by writing u(x) for u(cx) one then finds

U(30) = 0.5 × u(0) + 0.5 × u(100) = 0.5. (5.10)

In other words, the certainty equivalent for the mixed consequence in Eq. (5.10)
is equal to $30. Proceeding in a similar way, using certainty equivalents, the
expected utility for any amount $x in the range [0, 100] can be determined, and
the utility function can be plotted. A common shape of the resulting curve is
shown in Fig 5.1. The curve shows the utility function for a person who is
risk-averse, i.e. who would prefer a sure payoff of x $ to a lottery resulting in
the same expected payoff. If a person is risk-neutral the utility function will be
be a straight line through the origin and, similarly, for a risk-prone person, the
utility function would bend upwards. Put differently, risk-aversion implies
that the second derivative U ′′(x) of the utility function is negative.

5.2 Rational decision-making

Once the utility functions for a given individual have been determined, the
expected utility values can be used to guide behavior as follows: Given two
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Figure 5.1: A typical utility function, showing diminishing (sub-linear) utility values for
larger amounts.

possible actions a1 and a2, leading to the consequences c1 and c2, respecively,
a rational agent will choose the action for which the corresponding expected
utility is larger. Thus, if U(c1) > U(c2), the agent would choose a1, otherwise
a2 would be chosen. This behavior, in fact, defines a rational agent.

At this point, it should be noted that, even if all the axioms necessary for
the existence of a utility function holds true, it is not always so that utilities can
be computed in a simple way. In the examples considered above, the state of
nature was known, i.e. the various consequences and their probabilities could
be listed, and all that remained was the uncertainty due to randomness. How-
ever, in many situations, the state of nature is not known, and it is therefore
much more difficult to assign appropriate utility values to guide behavior. The
general theory of decision-making under uncertainty is, however, beyond the
scope of this text.

5.2.1 Decision-making in animals

Animals (including humans) generally face the problem of scarce resources,
making the ability to choose between different activities completely central to
survival. For example, a common problem is to allocate time to various es-
sential activities in such a way as to keep physiological variables (e.g. hunger,
thirst, temperature) within acceptable limits.

Clearly, even simple animals are capable of rational behavior. It should be
noted however, that rational behavior does not require rational thought. There
are many examples (one of which will be described below) of rational behavior
in animals that simply lack the brain power to contemplate their sensory input
in any detail (let alone maintain complex internal states). In such cases, the
rational selection of behavior occurs as a result of (evolutionary) design of the
animal. Note that rational behavior does not automatically imply intelligent
behavior. An agent is rational if it strives to maximize utility, but intelligent
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Figure 5.2: Left panel: A physiological space. The curved arrows show typical trajectories
followed as the animal comes sufficiently close to the lethal boundary. Right panel: A mo-
tivational space. The isocline joins points at which the tendency to perform the behavior in
question (drinking, in this case) takes a given constant value.

behavior will follow only if the animal’s utility functions have been shaped
(by evolution or as a result of learning) in an appropriate way.

As was discussed above, rational behavior amounts to the maximization
of a quantity called utility that functions as a common currency for the com-
parison of different behaviors in any given situation. Put in a different way,
a rational animal should switch between activities when (and only when) the
switch leads to an increase in (marginal) utility. In ethology, it is customary
to work with cost rather than utility. Thus, in ethology, the goals of the ani-
mal are commonly expressed in terms of the minimization of cost (e.g. energy
expenditure). However, the term benefit (negative cost) which is also used in
ethology, corresponds to utility in economics.

As mentioned in Chapter 2, the physiological state of an animal can be
represented by a point in a multi-dimensional physiological space, exemplified
in the left panel of Fig. 5.2, in which limits for each variable (e.g. the level
of some nutrient in the body) can be introduced. Similarly, the motivational
state of the animal, which is generated by the combination of the physiological
and perceptual states, can be represented as a point in a multi-dimensional
space. In this space, isoclines determining a given strength of the tendency to
display a given behavior, can be introduced. A simplified, two-dimensional
case, involving a single behavior, is shown in the right panel of Fig. 5.2. As the
animal displays a given behavior, its location in the motivational space will
change, as a result of, for example, a change in the perceived stimuli or its
physiological state (e.g. satiation as a result of eating).

At the points in the (multi-dimensional) motivational space where two
such isoclines cross each other, a switch in behavior (e.g. from eating to drink-
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Figure 5.3: A Stentor. Reproduced with kind permission of Dr. Ralf Wagner.

ing) can be observed. By design, an animal’s motivations will generally be
such as to keep it away from the lethal boundaries of the physiological space.

The problem of behavior selection is made more complicated by the fact
that the consequence of a given choice may be hard to assess (cognitively, or by
design) accurately in an unstructured environment. Furthermore, the switch
between two activities may involve a cost of changing, further complicating
the decision-making process.

Behavior selection in Stentor

Stentor is a simple, single-celled animal (see Fig. 5.3), that attaches itself to e.g.
a rock, and uses its hair-like cilia to sweep nutrients into its trumpet-shaped
mouth. Obviously, this animal has no nervous system, but is nevertheless ca-
pable of quite complicated self-preserving behaviors: Besides the feeding be-
havior (B1), Stentor is equipped with four different avoidance behaviors (in
response e.g. to the presence of a noxious substance). In increasing order
of energy expenditure, the avoidance behaviors are (a) turning away (B2), (b)
reversing the cilia, which interrupts the feeding activity (B3), (c) contraction, fol-
lowed by waiting (B4), and (d) detachment, i.e. breaking away from the object
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to which the animal is attached (B5). Despite its simple architecture, Stentor
is able to execute the various avoidance behaviors in a rational sequence, i.e.
starting with B2 and, if this behavor is insufficient to escape the noxious sub-
stance, proceeding with B3 etc. However, the sequence of activation of the
different avoidance behaviors is not fixed: Sometimes, B2 is followed by B4

instead of B3 etc. How can such a simple animal be capable of such complex
behavior, given its utter inability to reason about which activity to perform? It
turns out, as described in detail by Staddon [41], that Stentor’s behavior can
be accounted for by a very simple model, involving several leaky integrator
elements of the type described in Chapter 2. A two-parameter leaky integrator
is described by the equation

dU

dt
+ aU(t) = bX(t), (5.11)

where a and b are constants and X is the external stimulus. Now, let Ui denote
the utility associated with executing Bi, and set U1 = C = constant. For the
avoidance behaviors, let the utility functions be given by

dUi

dt
+ aiUi(t) = biX(t), i = 2, 3, 4, 5 (5.12)

Now, given initial values of the utilities U2, U3, U4, and U5 (here all set, arbi-
trarily, to zero), and the variation of X with time, the utility for each behavior
can be computed at all times. Using a utility-maximizing (rational!) behav-
ior selection procedure, where the behavior Bisel corresponding to maximum
current utility is selected, i.e.

isel = argmax(Ui), (5.13)

the behavior of Stentor, including the variable activation sequence of the avoid-
ance behaviors, can be modelled quite accurately, by selecting appropriate val-
ues for the constants ai and bi. An example is shown in Fig. 5.4. Here, it was
assumed that the variation X(t) of the noxious substance can be modelled as

dX

dt
+ k1X = X1, (5.14)

if B1 is active, and
dX

dt
+ k2X = X2, (5.15)

if any other behavior is active. k1, k2, X1, and X2 are non-negative constants,
satisfying X1 > X2 (i.e. the amount of noxious substance tends towards higher
values if no evasive action is taken). The left panel of the figure shows the
variation of Ui for i = 1, . . . 5. As can be seen in the figure, when X becomes
sufficiently large, B2 is activated for a short while. Next B3, B4, and B5 are
activated, in order. With the parameter values used in the example, the fall in
X is quite slow. Thus, in subsequent activations of the avoidance behaviors,
B2 − B4 are skipped, and the Stentor immediately activates B5.
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Figure 5.4: Left panel: The variation of the utility functions for the 5 behaviors. Solid curve:
B1, large-dotted curve: B2, small-dotted curve: B3, dot-dashed curve: B4, plus-sign curve:
B5. Right panel: The variation X(t) of the concentration of the noxious substance.

5.2.2 Decision-making in robots

The decision-making problems faced by autonomous robots are very similar
to those faced by animals: an autonomous robot must complete certain tasks
(e.g. delivery of objects in a factory), while avoiding collisions and while main-
taining a sufficient level of energy in its batteries.

Guided by ethological results, using the principles of utility maximiza-
tion (or cost minimization), McFarland [7] and McFarland and Bösser [8] have
modelled elementary behavior selection in robots, using quadratic cost func-
tions.

While the principle of utility maximization certainly is valid regardless of
the number of choices (behaviors) available, the problem of assigning appro-
priate utility functions by hand becomes unmanageable in situations involv-
ing more than a few behaviors. In order to assign such functions, the designer
of the robot must, in effect, tackle the daunting task of reasoning about the
usefulness of various behaviors, in all relevant situations, and then assign ap-
propriate utility values. An alternative procedure, more closely related to the
principles guiding rational behavior in simple animals, has been developed
by Wahde [43] and co-workers, who use evolutionary algorithms to evolve
appropriate utility functions for behavioral selection. In the utility function
method for behavioral selection, utility functions, usually in the form of poly-
nomials in the state variables (comprising both external variables, such as e.g.
the readings of IR sensors, and internal variables, corresponding e.g. to hor-
mone levels), are evolved, and the principle of utility maximization is then
used for the activation of behaviors. Methods for behavioral selection will be
studied in the next chapter.
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