
Chapter 6
Behavioral organization

6.1 Introduction and motivation

In the previous lectures, the topic of generating individual behaviors, either
by hand or using evolutionary methods, have been studied. However, in more
complex robotic brains, there is more than one behavior available: The brains
of such robots contain a behavioral repertoire from which behaviors are dy-
namically chosen for activation. Thus, a central issue in BBR is behavioral
organization (also known as behavioral coordination, behavior arbitration,
or action selection), i.e. the process of determining which behavior to activate
at any given time. This problem is particularly relevant for motor behaviors
involving locomotion (such as behaviors involved in navigation), but the prob-
lem is also relevant for non-motor behaviors (e.g. thought processes).

However, the approach of dividing the overall behavior of a robot into sev-
eral simple behaviors is, of course, not the only possible way of generating
complex behaviors. An alternative approach is to generate all behaviors simul-
taneously (e.g. through artificial evolution) within a single decision-making
system (e.g. a neural network).

A brief discussion of this approach will now be given, followed by a more
detailed description of some methods for behavioral organization.

6.2 Complex behaviors without explicit arbitration

As pointed out in [11] and [45], a common problem when evolving complex
behaviors is that the difference between the initial, randomly generated, robotic
brains and those capable of carrying out the desired complex behavior, is so
large that the EA without exception finds itself stuck in a local optimum. One
obvious solution is to break down the problem into simpler tasks, for which
the EA will be able to find an adequate solution, and then either to fuse several

85

86 CHAPTER 6. BEHAVIORAL ORGANIZATION

2000 4000 6000 8000

60

70

80

90

100

f

i

Figure 6.1: Maximum fitness as a function of the number of evaluated individuals during
the evolution of a complex behavior, divided into two constituent behaviors [45]. The three
short and almost vertical curves show the results from runs in which the constituent behaviors
were first evolved separately, and then combined to form the complete robotic brain.

evolved robotic brains into one complete brain [45], or to make the problem
progressively more difficult until the desired level of complexity is reached, a
procedure called incremental evolution [11].

An example, taken from [45], is shown in Fig. 6.1. Here, the task was to
evolve a complex robotic brain, capable both of cleaning an arena and avoiding
moving obstacles. Two different approaches were used, namely (1) attempting
to evolve the complex behavior directly, starting from random robotic brains
(which, in this investigation, were represented by sequences of IF-THEN-ELSE-
rules, as described in Fig. 4.3 in Chapter 4), and (2) first evolving cleaning and
evasion separately, then fusing the two generalized FSMs by adding random
connections between them and, finally, continuing the evolution until the com-
plex behavior emerged. In Fig. 6.1, the results of the investigation are shown.
The three lower curves, extending over the whole interval, show the maximum
fitness as a function of the number of evaluated individuals, whereas the three
short, almost vertical curves show the results obtained when first evolving the
constituent behaviors separately. In the latter case, the two curves have been
shifted to right by an amount that corresponds to the number of evaluated
individuals needed to reach acceptable performance of the two constituent
behaviors. As is evident from the figure, the approach of first evolving con-
stituent behaviors separately is, by far, the most successful one, quite rapidly
reaching the empirically determined fitness threshold for acceptable perfor-
mance of the complex behavior (indicated by the horizontal line). By contrast,
the attempts to evolve the complex behavior directly were not successful: In
no case was the fitness threshold reached.

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. BEHAVIORAL ORGANIZATION 87

A similar conclusion was reached by Gomez and Miikkulainen [11], who
studied the evolution of complex prey capture behavior in contests of pursuit
and evasion. In their study, a simulated robot was required to capture a prey,
moving with speed s, which was given a head start of n moves, a task denoted
Es

n. It was found that the complex behavior E1.0
4 could not be generated by di-

rect evolution. However, using several intermediate steps, first evolving E0.0
0 ,

then E0.0
2 etc., the E1.0

4 behavior could be achieved easily.
Thus, the conclusion reached in [11] and [45] is that a complex behavior can

be evolved incrementally. However, there are other ways of achieving complex
behaviors: Floreano and Mondada [10], by contrast, point out that complex be-
havior can, at least in certain situations, be achieved simply by increasing the
complexity of the environment, and decreasing the complexity of the fitness
function, in order to avoid canalizing the evolving robotic brains toward sub-
optimal solutions. In [10], the task of navigation described in Chapter 4 was
extended also to include the limited energy storage capacity of the battery of
the robot. Thus, the behaviors of homing navigation (toward a light source close
to the charging station) and battery charging had to be included in the brain of
the robot. Rather than using incremental evolution, Floreano and Mondada
simplified their fitness measure (see Chapter 4), removing the requirement of
straight-line motion, and allowed the evolving individuals to extend their life
by periodically returning to the charging station, in which case their simulated
batteries were instantaneously recharged. Indeed, during evolution, individ-
uals were found that could return to the charging station, thereby extending
their life, even though no fitness was directly associated with doing so. In
fact, the ideas presented in [10] bear some resemblance to the dichotomy of
task behaviors and auxiliary behaviors, discussed in connection with the util-
ity function method described below.

It should be noted, however, that the task used in [10] was quite simpli-
fied (e.g. by allowing instantaneous recharging), and that the authors did not
attempt to compare with incremental evolution through which, perhaps, the
complex behavior could have evolved even faster. Nevertheless, the results
reported above show that there are several ways of achieving complex behav-
iors.

In addition, Floreano and Mondada carried out a painstaking analysis of
their evolved neural network, in order to determine how it generated the com-
plex behavior. While their analysis was impressive, it does, perhaps, point to a
weakness with respect to the use of neural networks. The advantages of neural
networks, i.e. noise tolerance, absence of bias introduced by the user etc., have
been eloquently presented by several authors (e.g. [5], [10], and [30]). How-
ever, neural networks are also notoriously difficult to interpret, and a complex
behavior based on neural networks will therefore, most often, have to be used
as a black box.

Furthermore, the issue of scaling presents difficulties for the approach de-

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

88 CHAPTER 6. BEHAVIORAL ORGANIZATION

scribed in this section: The studies described above involved very few behav-
iors, and quite simple situations in which, for example, a sequence of tasks of
increasing complexity could be defined quite easily. In cases involving more
behaviors, the alternative approach of using a repertoire of distinct behaviors
and a system for organization is preferable, and the remainder of this chapter
will be devoted to such approaches.

6.3 Methods for behavioral organization

A researcher aiming to generate a method for behavioral organization has a
considerable amount of freedom and, not surprisingly, a very large number of
such methods have appeared in the literature, such as e.g. the pioneering sub-
sumption method which was developed by Rodney Brooks [3] and marked
the starting point for research in behavior-based robotics.

Unlike, say, an physicist or a biologist, a robotics researcher is not con-
strained by observations of nature to the same extent. Clearly, even a robot
must obey the laws of physics, and biology is often used as a source of inspi-
ration, but the details of a method for behavioral selection can, basically, be
devised in an infinite number of ways: Anything that works is an acceptable
method for generating a robotic brain. At a first glance, this might seem as
an advantage, but, in view of the very many methods that have appeared in
the literature, and the considerable difficulty in comparing them (resulting in
confusion), one might argue that it is, in fact, a strong disadvantage.

In any case, the many methods for behavioral organization that have been
proposed can be divided into two main categories, which will now be de-
scribed.

6.3.1 Taxonomy of methods for behavioral organization

The purpose of any method for behavioral organization is to determine when
different behaviors should be activated, and it is therefore natural to catego-
rize methods of behavioral organizations based on the procedure they use for
selecting behaviors. There are two main categories, namely arbitration meth-
ods and cooperative methods1. In arbitration methods, exactly one behavior
is active, and the selection of which behavior to activate is generally a function
both of present sensor readings and the internal state of the robot. In cooper-
ative methods, the action taken by the robot is a weighted combination of the
actions suggested by several behaviors. Behavioral organization methods can
be further divided into subcategories belonging to either of the two main cat-
egories just introduced. However, such a detailed classification is of dubious

1Cooperative methods are sometimes also called command fusion methods.

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. BEHAVIORAL ORGANIZATION 89

value, and will not be considered here. Instead, two examples of behavioral
coordination methods, one from each category, will be given.

6.3.2 The utility function method

The utility function method [43] is a biologically inspired arbitration method.
As its name implies, in this method, the selection of behaviors is based on the
concept of utility described in Chapter 5. Utility functions as a common cur-
rency, used for guiding the selection of behaviors. As an example, consider a
floor-sweeping robot, which is given a fitness increment for each square me-
ter of floor it sweeps. Clearly, the robot should try to sweep as much floor as
possible, in order to maximize its fitness. However, if the robot runs out of
battery energy, it will no longer be able to move. Thus, the utility of a behav-
ior that forces the robot to suspend, temporarily, its floor-sweeping activities
to charge its batteries will rise as the energy in the battery decreases, even
though the battery charging behavior does not lead to any direct increase in
fitness. Hence, in order to receive as much fitness as possible over a long pe-
riod of time, the robot must, in fact, maximize utility, which, as was shown in
Chapter 5, is exactly the strategy employed by rational agents.

Utility also provides a means of allocating limited resources in an optimal
way. The life of any animal (or robot) inevitably involves many trade-offs,
where less relevant behaviors must be sacrificed or at least postponed in order
to perform the most relevant behaviors, i.e. those associated with largest utility
value.

Organizing behaviors using the utility function method

In the utility function method [43], the robot is equipped with a behavioral
repertoire, in which each behavior Bi is assigned a utility function Ui, which
depends on the values of the state variables of the robot. Three kinds of state
variables are defined, namely external variables, denoted s, representing e.g.
sensor readings, internal physical variables, denoted p, representing e.g. the
energy in the batteries of the robot, and internal abstract variables, denoted x,
which are dimensionless variables used in the behavioral selection procedure,
and which roughly correspond to signalling substances (e.g. hormones) in
biological systems. Thus, the most general form of a utility function is

Ui = Ui

(

s1, . . . , sne, p1, . . . , pnp, x1, . . . , xni

)

, (6.1)

where ne, np, and ni denote the number of external, internal physical, and
internal abstract variables, respectively. However, in most cases, each utility
function will only depend on a subset of the set of available variables.

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

90 CHAPTER 6. BEHAVIORAL ORGANIZATION

46 48 50 52 54 56
time

-10

-5

0

5

10

ut
ili

ty
B3

B2

B1

Figure 6.2: The utility functions for a behavioral organization problem, shown as functions
of time during part of the evaluation of a simulated robot.

In the utility function method, behaviors are divided into two categories.
Task behaviors are directly related to the task of the robot and increase its
fitness, if successfully executed. An example of a task behavior is the floor-
sweeping behavior described in the example above. Auxiliary behaviors, on
the other hand, do not change the fitness of the robot, but are nevertheless
necessary for the robot to be able to perform its duties. The battery charging
behavior (for the floor-sweeping robot described above) is an example of an
auxiliary behavior.

Furthermore, a time variable ti, referred to as the behavior time of behav-
ior Bi, is defined for all behaviors. ti is set to zero every time Bi is activated,
and then follows the same rate of increase as the global time variable t, which
measures the time since the robot was initialized. As soon as behavior Bi be-
comes inactive, ti is again set to zero, where it remains until the behavior is
activated again.

Behavioral selection is straightforward in the utility function method; At
regular intervals, the values of the utility functions are computed, using the
latest available readings of the state variables as input, and the behavior with
the highest utility value is executed. This is illustrated in Fig. 6.2, in which is
shown the variation in time of three utility functions obtained for a behavioral
organization problem involving three behaviors. In the part of the simulation
shown in the figure, behavior B2 is initially active, since its utility value ex-
ceeds that of the other behaviors, and remains active from t = 44 (arbitrary
units) until around t = 49.5, when B3, which in this case happened to be an
auxiliary battery charging behavior, was activated. Around t = 56, B1 was

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. BEHAVIORAL ORGANIZATION 91

activated.

The problem, of course, is to determine the shape of the utility functions.
In the utility function (UF) method, the optimization of utility functions is nor-
mally carried out using EAs. In general, the utility functions depend on several
state variables, and should provide appropriate utility values for any combi-
nation of the relevant inputs. Thus, determining the exact shape of the utility
functions is a formidable task, and one for which EAs are very well suited. In
principle, GP can be used, in which case any function of the state variables can
be evolved. However, it is often sufficient to make an ansatz for the functional
form of each utility function, and then implement the EA as a standard GA for
the optimization of the parameters in the utility function.

For example, for a utility function Ui (associated with a behavior Bi) that
depends on the two variables s and p, a common ansatz is

Ui(s, p) = ai,00 + ai,10s + ai,01p + ai,20s
2 + ai,11sp + ai,02p

2, (6.2)

where the ai,jk are constants. When optimizing the utility functions the ai,jk

(and the corresponding constants in all other utility functions), should be en-
coded in the chromosomes used by the GA. The fitness gained while executing
the task behavior(s) is used as the optimization criterion.

A problem that may occur when selecting behaviors based on utility func-
tions is rapid behavior switching in which the robot keeps swapping back and
forth between two (or more) behaviors, and thus failing to achieve its goals.
One of the purposes of the internal abstract variables is to prevent such rapid
switching. Thus, an internal abstract variable xi, which takes non-zero values
only in a specific behavior Bi, can be introduced. When the robot switches
from another behavior to Bi, xi is immediately set to a non-zero value (e.g.
1), and if the utility functions are properly chosen, the utility of Bi will then
be raised sufficiently to avoid immediate switching to another behavior. As
an example consider, in Fig. 6.2, the jump in utility for B3 at the moment
when it becomes active. The internal abstract variables may depend both on
other state variables and on the behavior time ti, and the exact variation can
be optimized by the GA as well. For example, a possible ansatz for an internal
abstract variable xi is

xi =

{

bi,1 + bi,2e
−|bi,3|ti If Bi is active

0 Otherwise
(6.3)

where the bi,j are constants. Thus, with this ansatz for the internal abstract
variables, the chromosomes used by the GA will encode not only the constants
ai,jk, but the constants bi,j as well.

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

92 CHAPTER 6. BEHAVIORAL ORGANIZATION

Robotic brain

B1 B2 B3

B3.1

B3.2

Figure 6.3: An example of a robotic brain involving five behaviors on two hierarchical levels,
taken from [44].

Behavioral hierarchies

The presentation above is somewhat simplified, in that it does not consider the
fact that, in order to keep the level of complexity of the constituent behaviors
in a robotic brain at a reasonable level, the behaviors should often be divided
into sub-behaviors. Battery energy maintenance is a case in point: maintain-
ing the energy in the batteries of a robot requires that (at least) two separate
procedures be executed: one for finding an energy source, and one for connect-
ing to the energy source and carrying out the actual charging. Evidently, the
entire energy maintenance sequence could be considered as one single behav-
ior. However, generating such a behavior, and making it reliable, for example
in the case of sudden interruptions due to obstacles in the path of the robot,
would indeed be a daunting task. An alternative procedure is to introduce one
behavior for locating an energy source, and one for battery charging, and to
consider these behaviors as sub-behaviors to an overall energy maintenance
behavior. Thus, in such a case, the robotic brain would have a hierarchical
structure, an example of which is shown in Fig. 6.3.

This figure shows the structure of the robotic brain for a simple, two-wheeled
guard robot considered in [44]. The behavioral repertoire consisted of a total
of five behaviors, namely straight-line navigation (B1), obstacle avoidance (B2),
energy maintenance (B3), corner seeking (B3.1), and battery charging (B3.2). In the
arena where the robot operated, the battery charging stations were placed in
the corners. Thus, the corner seeking behavior corresponded to charging station
localization.

As shown in the figure, the five behaviors were placed on two hierarchical
levels. The utility function is able to cope with multiple hierarchical levels of
behaviors, by comparing utility values on a level-by-level basis. Thus, in the

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. BEHAVIORAL ORGANIZATION 93

B1

Figure 6.4: The motion of the robot (seen from above) in Example 1 while executing B1

case shown in Fig. 6.3, it was determined which of the three utility functions
U1, U2, and U3 took the highest value. If it happened to be U3, the comparison
of U3.1 and U3.2 would determine which of these two behaviors was active.

The procedure is actually slightly more complex than this since the switch
from, say, B2 to B3 (and then to one of the sub-behaviors B3.1 or B3.2) may re-
quire modification of the internal abstract variables (if any) in B3, in order to
avoid rapid behavior switching as discussed above. In practice, this is accom-
plished by executing an enter procedure on each hierarchical level. Thus, when
U3 exceeded U2, the enter procedure for U3 was executed (thus possibly further
raising U3 to prevent rapid switching back to B2), Next, the enter procedure of
either B3.1 or B3.2 was called, depending on their relative utility values, and
the robot then proceeded by executing the active behavior, i.e. either B3.1 or
B3.2.

Example 1: Circular navigation

Consider the very simple example of a two-wheeled, differentially steered
robot (e.g. a guard robot), whose task it is to move as far as possible along
a circular path. The robot, which is illustrated in Fig. 6.4, is equipped with two
behaviors, namely circular navigation (B1) and battery charging (B2).

In the first behavior, the robot sets the torque of its two motor to slightly
different values, thus executing a circular motion, as illustrated in Fig. 6.4.
In B2, the robot simply sets the torque of the two motors to zero, eventually
reaching a standstill. It is assumed that the charging of the batteries (taking

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

94 CHAPTER 6. BEHAVIORAL ORGANIZATION

Utility

Time

U2 = 0
U1

Utility

Time

U2

U1

Figure 6.5: Utility variation and behavior activation. In the left panel U2 is identically
zero, resulting in behavioral dithering (as indicated by the rectangles at the bottom: A black
rectangle indicates that B1 is active and a white one that B2 is active). By constrast, in the
right panel, U2 depends on an internal abstract variable x.

place e.g. via a conducting floor) starts after a time tc after the motor torques
have been set to zero, and then continues until B1 is activated. If the batteries
become full, no further charging occurs, but the robot does not start to move
until B1 is activated again.

The evaluation of the robot continues during a time interval of length T ,
unless the robot runs out of battery energy, in which case the evaluation is
terminated immediately. For this robot, B1 is the task behavior, for which a
fitness measure should be specified. In this simple case, the distance moved
while executing B1 is a suitable fitness measure. However, since the robot
consumes energy while executing B1 it must, from time to time, also activate
B2. In order to do so, it must be able to determine the utility values of B1

and of B2, at all times. Clearly, in this simple case, the battery energy E is
a very important variable. Thus, for B1, the following ansatz can be made
for the utility function: (making the somewhat arbitrary choice p = 2 for the
polynomial degree)

U1(E) = a00 + a10E + a20E
2. (6.4)

Now, since the selection of a behavior (for activation) depends only on the
relative utility values of the available behaviors (i.e. the behavior with the
highest utility value is activated), one might be tempted to set U2 ≡ 0 in this
case. However, this would lead to a more subtle problem: Assume that the
coefficients determining U1 have been set such that U1 decreases as the battery
energy falls. If U2 were identically zero, B2 would become active as soon as U1

dropped below zero, provided that the coefficients were such that it does.
To be specific, consider the case in which the battery energy is normalized

to the range [0, 1], and where U1 is given as U1 = −0.5 + E2, so that B2 would
become active at E = 0.707 As soon as B2 becomes active, the battery

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. BEHAVIORAL ORGANIZATION 95

2 4 6 8 10 12 14
Time

0.5

1

1.5

2

2.5

3

U
t
i
l
i
t
y

Figure 6.6: The actual utility functions found by EA for the circular navigation example.
The solid line shows U1 and the dashed line represents U2.

energy would rise, resulting in U1 becoming positive, and thus activating B1.
However, at this point, E would again fall, thus directly making U2 > U1,
again activating B2 etc. Put differently, the robot would find itself dithering
endlessly between B1 and B2. This situation is illustrated in the left panel
of Fig. 6.5. Clearly, a different ansatz is needed for U2, and this is where the
concept of internal abstract variables becomes useful. Consider a variable x
that takes the value 1 whenever B2 is active and the value 0 whenever B1 is
active2. Now, an ansatz of the form

U2(x) = b00 + b10x + b20x
2, (6.5)

can be made3 for U2. Now, as U2 becomes larger than U1, as a result of a drop
in battery energy, x (and, therefore, U2) will make an instantaneous jump. Pro-
vided that the coefficients in Eq. (6.5) have been set appropriately, this would
make U2 much larger than U1, thus keeping B2 active for some time, as illus-
trated in the right panel of Fig. 6.5. In this simple problem, it would be pos-
sible to set correct values for the parameters (aij , bij) by hand. Nevertheless,
an EA was applied to this problem. Appropriate values for the six parameters
were quickly found, and the resulting evolved utility functions are illustrated
in Fig. 6.6.

Example 2: A simple exploration robot

As a second example of an application of the utility function method, a sim-
ple exploration robot will be considered. The two-wheeled robot, shown in

2The variation of x could be more complex. However, this simple specification will suffice
for the present example.

3Clearly, the ansatz U2 = b10x would be sufficient in this case. However the form in Eq. (6.5)
was chosen for generality: It would be applicable even in cases with more complex variation
of x.

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

96 CHAPTER 6. BEHAVIORAL ORGANIZATION

Figure 6.7: A two-wheeled exploration robot in a simple arena with 5 stationary obstacles.

Fig. 6.7, is differentially steered, and equipped with a two-dimensional laser
range finder for measuring the distance to the nearest objects in a certain sec-
tor. In this example, the sector of measurement will be assumed to cover a
narrow range centered around the current direction of motion of the robot.
The task of this robot will be to explore a given arena, also shown in Fig. 6.7,
while avoiding collisions with stationary obstacles.

Obviously, in a more realistic application, the robot would have to be able
to find a charging station and charge its batteries when necessary, avoid mov-
ing obstacles (in addition to stationary ones), and carry out purposeful motion
rather than the more or less random wandering that will be considered here.
In such cases, a rather complex robotic brain involving many behaviors, prob-
ably distributed on various hierarchical levels, e.g. as illustrated in Fig. 6.3,
would be needed. The utility function method would easily handle such a
situation, but, for simplicity and clarity, a greatly simplified situation will be
studied in this example, where the capacity of the robot’s battery is assumed
to be infinite. In fact, only two behaviors will be included in the robotic brain,
namely straight-line navigation (B1) and obstacle avoidance (B2). In B1, the brain
of the robot sends equal signals to the two motors of the robot, making it move
in a straight line (after an initial transient, in case the robot was turning at the
time of activation of B1). In B2, equal signals, but of opposite sign, will be sent
to the two motors, until the minimum distance (as measured by the laser range
finder) to the nearest obstacle exceeds a certain minimum value.

The fitness measure is basically taken as the amount of time spent execut-

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. BEHAVIORAL ORGANIZATION 97

ing B1. However, the robot receives a fitness increase only if it executes B1

continuously for at least T0 seconds. The value of T0 was chosen, somewhat
arbitrarily, as 0.2 s. With this fitness measure, the robot has a strong incentive
for executing B1 as much as possible, without dithering between the two be-
haviors. On the other hand, it is also necessary for it sometimes to activate
B2, in order to avoid collisions, since the evaluation is terminated if the robot
collides with a wall or with some other obstacle. Thus, the robot is faced with
a behavioral selection problem, involving a trade-off between carrying out the
assigned task (by executing B1) and surviving (by executing B2). Clearly, in
this simple case, it would not have been very difficult to write down a pro-
cedure for behavioral selection by hand. However, as indicated above, this
simple example of a behavioral selection problem was chosen primarily for its
(intended) pedagogical value, not for its (rather limited) usefulness.

In order to apply the utility function method, an ansatz is needed for each
utility function. Here, U1 will be taken as a pth degree polynomial in the vari-
ables s1, s2, and s3 which represent the (inverted) readings along three rays of
the laser range finder (in the directions 0, ± 30 degrees, relative to the forward
direction). The inverted reading y along a ray equals R − z, where R is the
maximum range (4.0 m, in this case) of the laser range finder, and z is the mea-
sured distance to the nearest object along the ray. Thus, y will be in the range
[0, R]. For B2, the utility function (U2) depends on two variables: savg, which
equals the average reading of all rays of the laser range finder and x, which is
an internal abstract variable. x can be interpreted as a hormone whose level
is raised if the robot senses fear, e.g. as a result of an imminent collision. The
variation of the variable x is slightly simplified in this example, however: it
takes the value 0 if B1 is active, and the value 1 if B2 is active.

Thus, the utility functions U1 and U2 will be polynomials of three and two
variables, respectively, i.e.

U1(s1, s2, s3) = a000 + a100s1 + a010s2 + a001s3 + a110s1s2 + . . . , (6.6)

and

U2(savg, x) = a00 + a10savg + a01x + a20s
2
avg + a11savgx + a02x

2 + . . . (6.7)

Thus, the task of the evolutionary algorithm will be to determine the coeffi-
cents aijk and aij so as to maximize the fitness of the robot in evaluations of a
given maximum duration T (here set to 50 s).

The two behaviors B1 and B2 were implemented in the format defined by
the UF Library simulation package, which implements the utility function
method [42].

Next, an executable application was built, and the simulations for this ex-
ploration robot were carried out, using utility function polynomials of degree
p = 2. Due to the simplicity of the problem, the evolutionary algorithm rather

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

98 CHAPTER 6. BEHAVIORAL ORGANIZATION

2 4 6 8 10
Time

-3

-2

-1

0

1

2

3

4

U
t
i
l
i
t
y

Figure 6.8: Left panel: The motion of the robot, whose initial position is marked by a black
disk. Right panel: The variation of the utility functions for the first 10 seconds of the motion.
The solid line shows U1, and the dashed line U2.

quickly found robotic brains that were able to keep the robot from colliding
with obstacles for the full duration of an evaluation, while spending as much
time as possible executing B1. In the left panel of Fig. 6.8, the motion of an
evolved individual is shown, seen from above. The right panel of the same
figure shows the variation of the utility functions for the first 10 seconds of the
evaluation. At the initial moment of the evaluation, the robot was placed right
in front of an obstacle, forcing it first to activate B2 in order to rotate to a differ-
ent direction (this part of the motion is not visible in the left panel of Fig. 6.8,
which only displays translational motion). Once a clear path was found, at
t ≈ 2 seconds, the robot began executing B1. At t ≈ 5.5 seconds, another
obstacle was encountered, and the robot again activated B2 for a fraction of a
second, before resuming the execution of B1.

Example 3: An analytically solvable problem

In simple cases, the problem of finding utility functions can, in fact, be solved
analytically. As an example, consider a greatly simplified situation in which
two behaviors are to be combined into a functioning robotic brain. The first
behavior (hereafter: B1) is a task behavior, e.g. floor-sweeping, whereas the
second behavior (B2) is responsible for re-charging the batteries of the robot.
The goal for the robot is to work as much as possible with its task, i.e. to gain
as much fitness per unit time as possible, without running out of energy.

In this simple example, the first behavior is specified through the fitness

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. BEHAVIORAL ORGANIZATION 99

function

f1(t1) =
t1

1 +
(

t1−a
b

)2 , (6.8)

where t1 is the behavior time for B1, and a and b are constants. It is common in
any task behavior that some time elapses before the robot is able to do some-
thing useful, and that the benefit of carrying out the behavior also exhibits
diminishing return after some time. Both features are captured by the fitness
function defined in Eq. (6.8). The exact shape of f1(t1) was chosen simply be-
cause it is easy to integrate, which is needed for this analytical example but
otherwise, of course, unnecessary. For B2, which is an auxiliary behavior, the
fitness function f2(t2) is set identical to 0.

As for the state variables, an internal physical variable p1 = E, measuring
the (normalized) energy stored in the batteries, is introduced. In B1, E varies
as

dE

dt1
= −c < 0, (6.9)

where c is a constant, whereas in B2, E varies as

dE

dt2
= αE if E < 1, 0 otherwise, (6.10)

where α is a constant. Thus, it is assumed that it is more difficult to recharge
the battery the emptier it is.

The second state variable introduced is an internal abstract variable, de-
noted x. This variable is identically zero in B1; By contrast, when B2 is initi-
ated, x is set to 1, and it then falls off exponentially with time, i.e.

x = 1 at t2 = 0, ẋ = −βx for t2 > 0, (6.11)

where β is a constant. This choice of variation with time for x is somewhat ar-
bitrary, but will be sufficient for this simple example. Proceeding to the utility
functions, a very simple ansatz is used:

U1 ≡ 0, (6.12)

U2(E, x) = (1 − x)(ε1 − E) + x(ε2 − E), (6.13)

where ε1 and ε2 are two constants to be determined (ε2 > ε1).
Of course, a genetic algorithm could, in principle, be used for determining

the optimal values of ε1 and ε2. However, if it is assumed (as we will do) that
β = α ≡ k, the present example is actually analytically tractable.

It will be assumed that the robot starts its motion in B1, with energy E = ε1.
Now, as dE/dt1 < 0 in B1, E will dip below ε1 instantaneously, thus making

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

100 CHAPTER 6. BEHAVIORAL ORGANIZATION

0.2

0.4

0.6

0.8

1

e1
0.2

0.4

0.6

0.8

1

e2

0
0.5
1

1.5

2

0.2

0.4

0.6

0.8e1
0 0.2 0.4 0.6 0.8 1

e1

0

0.5

1

1.5

2

f
i
t
n
e
s
s

g
a
i
n
e
d

p
e
r

u
n
i
t

t
i
m
e

Figure 6.9: Left panel: the fitness gained per unit time as a function of the two optimization
parameters ε1 and ε2 in a case with a = 10.0, b = 3.0, c = 0.02, and k = 0.03 . Right panel:
A slice through the surface in the left panel, for ε2 = 1.

U2 > 0. The robot then starts executing B2, setting x to 1. The variation of both
x and E can easily be determined as

x = e−kt2 , (6.14)

and
E = ε1e

kt2 , ifE < 1. (6.15)

Thus, inserting Eqs. (6.14) and (6.15) in Eq. (6.13),

U2(t2) =
(

1 − e−kt2
)

ε1

(

1 − ekt2
)

+ e−kt2
(

ε2 − ε1e
kt2
)

. (6.16)

The switch to B1, at which point x is set to zero, occurs at time t2→1, when U2

dips below zero. Using Eq. (6.16),

t2→1 =
1

k
ln

ε1 +
√

4ε1ε2 − 3ε2
1

2ε1
. (6.17)

At this point, the energy stored in the batteries of the robot equals

E0 = ε1e
kt2→1 =

ε1 +
√

4ε1ε2 − 3ε2
1

2
. (6.18)

From Eq.(6.9), in B1, the energy in the battery at t = t1 is given by

E = E0 − ct1. (6.19)

As noted above, the switch to B2 occurs at E = ε1. Using Eq. (6.19) it is seen
that this level is reached at

t1→2 =

√

4ε1ε2 − 3ε2
1 − ε1

2c
. (6.20)

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. BEHAVIORAL ORGANIZATION 101

Robot with

3 sensors

Moving

obstacle
Arena border

Figure 6.10: The arena used in [33] (Example 4). The aim of the simulated robot is to move
without collisions, from right to left, in the arena.

The increase in fitness during this time is given by

∆f =
∫ t1→2

0
f1(t1)dt1 =

∫ t1→2

0

t1dt1

1 +
(

t1−a
b

)2 =

= ab
(

arctan
t1→2 − a

b
+ arctan

a

b

)

+
1

2
b2 ln

(t1→2 − a)2 + b2

a2 + b2
. (6.21)

This is also the total fitness change during a complete cycle (i.e. through B2

and B1), since no fitness variation occurs during the time when B2 is active.
The total fitness gained per unit time is thus given by

∆f

∆t
=

∆f

t2→1 + t1→2

, (6.22)

where the expressions for ∆f , t2→1, and t1→2 are given by Eqs. (6.21), (6.17),
and (6.20), respectively. Once the parameters a, b, c, and k have been specified,
∆f

∆t
is a function of the two optimization parameters ε1 and ε2 only. The result-

ing surface for a = 10.0, b = 3.0, c = 0.02, and k = 0.03 is shown in the left
panel of Fig. 6.9. The maximum occurs at ε1 = 0.608, ε2 = 1. A slice through
the surface, for ε2 = 1, is shown in the right panel of the same figure.

Example 4: Locomotion in an arena with moving obstacles

In [33], the utility function method was used for generating a behavioral orga-
nization system for a hopping robot traversing an arena with moving obsta-
cles, illustrated in Fig. 6.10. The simulated robot, consisting of a foot plate and
a leg with two degrees of freedom (DOF), implemented as two revolute joints,
was equipped with four behaviors: move forward (B1), move backward (B2), stop
(B3), and charge batteries (B4). The robot was simulated using full newtonian

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

102 CHAPTER 6. BEHAVIORAL ORGANIZATION

Figure 6.11: The robot used in [33] (Example 4) as seen from above, equipped with three
simple proximity sensors, each with a triangular-shaped detection range. The filled black circles
illustrate points on an obstacle that are detectable by the range sensors. Dashed lines indicate
detected points in this particular configuration.

dynamics, implemented in the EvoDyn package developed by Pettersson [32].
In B4, the robot was required to remain at a standstill, charging its batteries
using simulated solar cells.

While the UF method itself uses an EA to generate behavioral organization,
the constituent behaviors can be generated by any method. In the particular
case considered in [33], the behaviors were implemented as continuous-time,
recurrent neural networks, and were optimized using an EA. Note, however,
that the EA optimizing the individual behaviors should not be confused with
the EA used for generating the behavioral organizer through the UF method.

Once the four constituent behaviors had been generated, the behavioral
organizer, assigned the task of selecting between behaviors B1-B4, was gen-
erated using the utility function method. The simulated robot was equipped
with three proximity sensors, as illustrated in Fig. 6.11. In addition, the robot
was able to measure the amount of available energy in its batteries. Thus,
the ansatz for each utility function was taken as a second-degree polynomial
Ui = Ui(s1, s2, s3, E, xi), where s1, s2, and s3 are the readings of the three sen-
sors, E is the battery energy, and xi is a behavior-specific internal abstract vari-
able, whose variation was modelled as in Eq. (6.3). The total number of pa-
rameters to be optimized by the GA was 96.

The settings of the simulated robot’s battery were such that frequent recharg-
ing was necessary. Thus, the task of moving through the arena was strongly
non-trivial, requiring constant vigilance in order to avoid collisions or an empty
battery (in which cases the evaluation was terminated). The fitness measure
was simply taken as the distance moved in the forward direction.

Despite the many parameters determining the utility functions and the ab-
stract internal variables, a successful behavioral organizer was found quite
quickly. An example is shown in Fig. 6.12.

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. BEHAVIORAL ORGANIZATION 103

0 1 2 3 4 5 6 7
Time (s)

0

1

2

3

U
t
i
l
i
t
y

Figure 6.12: The early stages of a typical run. The bottom right panel shows the varia-
tion of the four utility functions in one of the best performing individuals during evolution
with the dynamic model. The curves represent the utility values for the behaviors move for-
ward (solid curve), move backward (dash-dotted curve,), stop (dotted curved), and charge
(dashed curve). Note that the utility of the move backward behavior is very low throughout
the simulation.

However, the dynamically simulated robot was unable to traverse the whole
arena. The failure could be attributed to the limited quality of the constituent
behaviors B1-B4, rather than a failure of the behavioral organization system.
Thus, an obvious conclusion was that the constituent behaviors must at least
reach some minimum level of quality, in order for a behavioral organizer to
perform well.

In order to study the evolution of behavioral organizer in its own right,
Pettersson and Wahde also carried out some simulations using a much sim-
pler dynamical model (essentially a point-particle model) for the simulated
robots. In this case, the EA found utility functions that would allow the robot
to traverse the entire arena without collisions. An example of the motion of
the simplified robot is shown in Fig. 6.13.

6.3.3 The potential field method

The potential field method [18] is an example of a cooperative method, and
is used for robot navigation problems. In the potential field method, the robot
moves in the direction suggested by the (negative) gradient of an artificial po-

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

104 CHAPTER 6. BEHAVIORAL ORGANIZATION

97 97.5 98 98.5 99 99.5 100
Time (s)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

U
t
i
l
i
t
y

Figure 6.13: A behavior switching sequence where, at first, behavior B1 (move forward) is
active. Shortly thereafter behavior B4 (charge) is activated due to the detection of an approach-
ing obstacle. As the obstacle passes, and the sensor signal decreases, B1 is activated again. For
clarity, only the utility values for B1 (solid line) and B4 (dashed line) are shown in the bottom
panel.

tential field, generated by the objects (such as obstacles) in the vicinity of the
robot and by the navigation goal. As shown in Fig. 6.14, the potential field
can be interpreted as a landscape with hills and valleys, and the motion of the
robot can be compared to that of a ball rolling through this landscape. The
navigation goal is usually assigned a potential field corresponding to a gentle
down-hill slope, e.g.

Φg = kg (x − xg)
2 , (6.23)

where kg is a positive constant, x the position of the robot, and xg the position
of the goal. Continuing with the landscape analogy, obstacles should generate
potentials corresponding to steep hills. Thus, the potential of an obstacle can
be defined as

Φo = koe
−

(x−xo)2

w2
o , (6.24)

where ko and wo are constants, determining the height and width of the obsta-
cle, respectively, and xo is the position of the obstacle. The total potential is
given by

Φ = Φg +
no
∑

i=1

Φo
i , (6.25)

where no is the number of obstacles. Once the potential field has been defined,
the desired direction of motion r̂ of the robot can be computed as the negative

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. BEHAVIORAL ORGANIZATION 105

Obstacle

Goal

Figure 6.14: A potential field containing a single obstacle and a navigation goal.

of the normalized gradient of the field

r̂ = −
∇Φ

|∇Φ|
. (6.26)

In order to integrate the equations of motion of the robot, it is not sufficient
only to know the desired direction: the magnitude of the force acting on the
robot must also be known. In principle, the unnormalized negative gradient
of the field could be taken as the force acting on the robot, providing both
magnitude and direction. However, in that case, the magnitude of the force
would vary quite strongly with the position of the robot, making the robot a
dangerous moving object (if it is large). A safer approach is to attempt to keep
the speed of the robot at a constant (or slowly varying) reference value Vref ,
while following the directions suggested by the vector r̂ defined in Eq. (6.26).
Using the equations of motion defined in Chapter 1, the motion of the robot
can be taken as

MV̇ + αV = AτV, (6.27)

where

τV ≡ τL + τR =
αVref

A
+ a (Vref − V) , (6.28)

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

106 CHAPTER 6. BEHAVIORAL ORGANIZATION

0
2

4

6

8

100

2

4

6

8

10

0

50

100

150

0
2

4

6

8

2 4 6 8 10

2

4

6

8

10

Figure 6.15: Potential field navigation. The left panel shows a potential field, and the right
panel shows the motion (seen from above) of a robot navigating in this field, using the potential
field method, towards the goal located at (9, 9).

where a is a positive constant, and

Iϕ̈ + βϕ̇ = Bτϕ, (6.29)

where
τϕ ≡ −τL + τR = b (ϕref − ϕ) , (6.30)

where ϕref is the desired direction of motion, i.e. the direction of the vector
r̂, and b is a positive constant. This simple, proportional control law will be
sufficient if the reference angle ϕref varies slowly.

Waypoint navigation With any gradient-following method, there is always
a risk that the robot will become stuck in a local minimum, and the potential
field method is no exception. In Fig. 6.16 a robot is shown in an environment
containing three objects forming a wedge-shaped obstacle, and a goal. The
corresponding potential field will attract the robot towards the goal, its poten-
tial dominating over that from the obstacles at the robot’s starting position.
However, as the robot approaches the obstacles their repelling potentials will
begin to be noticeable. Attracted by the goal, the robot will eventually find
itself stuck inside the wedge, at a local minimum of the potential, a situation
sometimes referred to as a locking phenomenon. In order to avoid locking
phenomena, the path between the robot and the goal can be supplied with
waypoints, represented by small attractive potentials Φp given by

Φp = kpe
−

(x−xp)2

w2
p , (6.31)

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. BEHAVIORAL ORGANIZATION 107

0

0.5

1

1.5

2

-0.5

0

0.5

-1.5
-1

-0.5
0

0.5
1

0

0.5

1

1.5

2

Figure 6.16: The locking phenomenon. Following the gradient of the potential field the robot,
shown as a black dot, moves towards the goal, located at (2, 0). However, the three obstacle
potentials generate a local minimum, where the robot eventually gets stuck.

i.e. the same form as the obstacle potentials, but with negative constants kp.
Of course, the introduction of waypoints leads to the problem of determining
where to put them. An analysis of such methods will not be given here. Suffice
it to say that the problem of waypoint placement can be solved in various ways
to aid the robot in its navigation.

Waypoints are removed once the robot has passed within a distance R from
them, to avoid situations in which the robot finds itself stuck at a waypoint.

Evolving the potential field Needless to say, the performance of a robot nav-
igating by means of the potential field method will be determined by the val-
ues chosen for the parameters Vref (if applicable), kg, ko, and wo, as well as kp

and wp if waypoints are used. The parameters can often be set by trial and
error. In more complex situations, an evolutionary algorithm can be used for
optimizing the potential field. In such a case, the chromosome would encode
the parameters just listed, and an ordinary genetic algorithm could be used for
finding optimal parameter values.

6.3.4 Other methods

In addition to the two methods just described, many other methods for be-
havioral organization have been suggested in the literature, starting with the
subsumption method developed by Brooks [3]. The methods of activation net-

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

108 CHAPTER 6. BEHAVIORAL ORGANIZATION

works [22] and distributed architecture for mobile navigation (DAMN) [34]
are often cited, but will not be described further here.

It should be noted, however, that in many methods suggested to date, it is
not uncommon, as pointed out in [1], [23], and [43], that the user must spec-
ify the architecture of the behavioral organization system by hand. This is
far from optimal, for several reasons: First, behavior-based robots are gen-
erally expected to operate in unstructured environments, which cannot easily
be predicted, making it difficult to tune parameters by hand. Second, even
if the environment happens to be fairly well structured, it is difficult to as-
sess (at least quantitatively) the relevance of some behaviors, especially those
that are not directly related to the assigned task of the robot. For example, a
battery-driven robot that is assigned the task of transporting goods between
two locations, must occasionally recharge its batteries. Clearly, the behavior
of charging batteries is important, but it is difficult to judge quantitatively its
relevance against the relevance of the assigned task, and thus to assign an opti-
mal reward for it. Third, hand-coding a behavioral organizer represents a step
away from the biologically inspired behavior-based architecture. The main
alternative to hand-coding is, of course, to use EAs.

c© 2007, Mattias Wahde, mattias.wahde@chalmers.se

