FFR125, FIM760 Autonomous agents

LP III-IV, 2008

Course information

Lecturer:

Krister Wolff, tel. 772 3625, email: krister.wolff@chalmers.se

Course assistant:

David Sandberg, phone: 772 3696, e-mail: david.sandberg@chalmers.se

Examiner:

Mattias Wahde, phone: 772 3727, e-mail: mattias.wahde@chalmers.se

Course web page:

http://www.am.chalmers.se/~wolff/AA/AutonomousAgents.html

Course contents:

The fundamentals of behavior-based robotics and evolutionary robotics.

The basics of robot hardware: sensors, actuators, and microcontrollers.

The basics of rational decision-making.

The basics of animal behavior and its relevance for autonomous agents.

The basics of learning and adaptive behavior for autonomous robots.

Elementary robot construction and programming.

Teaching hours and locations:

3rd quarter (January 21 - March 7):

Tuesday 10.00 - 11.45, MC

Friday 13.15 - 15.00, MC

(Entrance to the MC lecture hall is from Hörsalsvägen 5.)

4th quarter (March 31 - May 23):

Tuesday 08.00-11.45, F7105A (ET-lab).

Literature:

For the first part of the course: Theory and simulations:

- 1. **Wahde, M.:** *An introduction to autonomous robots,* lecture notes (**MW**). Will be made available for download shortly.
- 2. **Xie, M.** -- Fundamentals of robotics linking perception to action (**MX**). Available at Cremona bookstore, and at various web bookstores.
- 3. Various scientific papers (web links or printouts will be made available during the course).

For the second part of the course, robotics construction project:

- 4. Lindsay, A.: *Robotics with the BoeBot Student guide v2.2*, (AL). Available for download at www.parallax.com.
- 5. The BasicX Manual: *BX-24 Documents* (**BX**). Available for download at www.basicx.com.
- 6. Various additional materials, which will be announced in the beginning of Lp IV.

Home problems

There will be two sets of home problems with a maximum score of 25p (10p and 15p, respectively). A *minimum* score of 4p (set 1) and 6p (set 2), on the home problems is required in order to pass.

Incorrectly solved problems will *not* be returned for correction, so make sure to check your solutions and programs carefully before you submit!

Preliminary deadlines for the home problems are 2008.02.12 and 2008.03.04, respectively.

Mid-course exam

After the 3rd quarter, there will be a written exam. Maximum score is 25 points. A minimum of 10p is required in order to pass.

Robotics project

The students will work in groups of 4-6 students. It is mandatory to carry out the robot construction project. There will be an opportunity to receive *two extra points* on the robot construction, for creativity¹. There will be two major robotics assignments to carry out for the students, and each project group *must* participate, with their robot, in the robotics project demonstration events:

Preliminary dates for the robotics project demonstration events are 2008.04.22 and 2008.05.20.

Note: It is *mandatory* for *each* student to participate in the project demonstration events (and in the construction/programming work!), in order to pass.

Each project group is also *required* to hand in a brief report, by the end of the 4th quarter, regarding their robot construction and programming activities.

Examination and grading:

The examination will consist of two sets of home problems (maximum score: 10p and 15p, respectively), and a written exam by the end of the third quarter (maximum score: 25p).

The robotics construction project is mandatory to carry out. Two points *may* be received for creative robot construction.

The requirements for the various grades are as follows:

ECTS:

A: Total score in [45, 50]

B: Total score in [41, 44.5]

C: Total score in [36, 40.5]

D: Total score in [30, 35.5]

E: Total score in [20, 29.5]

Chalmers:

5: Total score in [43, 50]

4: Total score in [36, 42.5]

3: Total score in [20, 35.5]

GU:

VG: Total score in [42, 50] **G**: Total score in [20, 41.5]

¹ The criteria for receiving two extra points will be described at the beginning of Lp IV.

Preliminary course program (quarter.week):

Theory and simulations will be covered in the 3rd quarter. Robot construction and programming will be the topics of the 4th quarter.

Week 3.1:

<u>Lecture 1: Course introduction, introduction to autonomous robots:</u>

MW: p. 1-2 **MX:** p. 1-26

Lecture 2: Kinematics, dynamics, and sensors of autonomous robots:

MW: p. 2-19 **MX:** p. 115-143

Week 3.2:

Lecture 3: Simulation of autonomous robots:

MW: p. 19-27, 109-114

Handout of home problems, set 1.

Lecture 4: Reserve lecture:

Work on home problems, if nothing else is announced.

Week 3.3:

Lecture 5: Decision-making system of robots:

MX: p. 573-600,

and an example of path-planning for mobile robots, i.e. the A*-algorithm.

Lecture 6: Animal behavior: Lessons for robotics:

MW: p. 29-38

Shi, W. and Zusman, D.R. Fatal attraction, Nature, 366, 414-415, 1993.

Week 3.4:

<u>Lecture 7.a: Behavior-based robotics: Generating robot behaviors:</u>

MW: p. 39-52

Lecture 7.b: Evolutionary robotics: Evolving basic behaviors:

MW: p. 53-74

Lecture 8: Utility theory and rational decision-making:

MW: p. 75-84.

Week 3.5:

<u>Lecture 9: Behavior organization in autonomous robots:</u>

MW: p. 85-108.

Handout of home problems, set 2.

Lecture 10: Reserve lecture:

Work on home problems, if nothing else is annonced.

Week 3.6:

Lecture 11: Control system of robots I:

MX: 199-239:

Lecture 12: Control system of robots II.

MX: 239-283:

Week 3.7:

<u>Lecture 13: Information system of robots:</u>

MX: 303-374:

Lecture 14a: Learning and adaptive behavior in animals and robots:

Scherffig, L. Reinforcement learning in motor control.

Lecture 14b: Multi-robot applications:

Labella T.H., Dorigo M., Deneubourg J.-L. (2006): Division of Labour in a Group of Robots Inspired by Ants' Foraging Behaviour.

Week 4.1-8:

Robotics construction project will be the topic of the 4th quarter. Detailed information regarding these activities will be announced on the course homepage.