
Chalmers University of Technology
Department of Applied Mechanics

Home problems, set 1, FFR125/FIM760 Autonomous agents 2008

General instructions

Home problems set 1 consists of three parts. The maximum number of points is 10, and a
minimum score of 4 points is required in order to pass. Incorrect problems will not be returned
for correction, so make sure to check your solutions and programs carefully before submitting
them. In order to maximize the utility of your efforts, carefully follow the instructions given
below:

1. Hand in your solutions, via email to krister.wolff@chalmers.se, no later than 17.00
on 2008-02-15. Late hand-in will result in a deduction of points!

2. Make sure to include your name and (if available) civic registration number (personnum-
mer).

3. Read the problem formulations carefully, to make sure that you provide clear answers to
all questions.

4. The solutions should be given in the form of a brief report in PDF, PS, MS Word, or
ODT format, for each problem. The programming code alone is not to be considered as
a report!

5. In analytical problems make sure to include all the steps of the calculation in your report,
so that the calculations can be followed. Providing only the answer is not sufficient.
Whenever possible, use symbolical calculations as far as possible, and introduce numerical
values only when needed. All mathematical expressions in the report should be formatted
(using e.g. MS equation editor).

6. In problems requiring programming, it should not be necessary to edit the programs.
Programs that do not function or require editing to function will result in a deduction of
points.

7. Make your own solutions! You may, of course, discuss the problems with other students.
However, each student must hand in his or her own solution. In obvious cases of plagia-
rism, points will be deducted from all students involved.

8. Collect all your files in one zip file which, when opened, generates one subdirectory for
each problem, i.e. Problem1.1, Problem1.2, Problem1.3.

Deadline: 20080215, at 17.00!

GOOD LUCK!

R

R

V

X

Y

Figure 1: The differentially steered robot considered in Problem 1.1

Problem 1.1, 4p, Basic kinematics

Consider the two-wheeled differentially steered robot shown in Fig. 1.

(a) (2p) If the wheel speeds and the radius (R) of the robot are known, its position can be
obtained using the kinematic equations derived in Chapter 1. Consider a case where the robot
starts at (x, y) = (0, 0), heading in the positive x direction (ϕ = 0) as shown in the figure.
Assuming that the wheel speeds are constant and given by

vL(t) = v1, (1)

vR(t) = v2, (2)

derive a general expression for the position (x, y) and direction of heading ϕ for the robot, as
functions of time, and show that the resulting trajectory is circular (if v1 6= v2). What is the
radius of the circular trajectory?

(b) (2p) Write a Matlab program for numerical integration of the kinematic equations (1.18)
in Chapter 1. Consider a case in which the wheel speeds are given by

(vL(t), vR(t)) =

{

(t

t1
, t

t2
) if 0 ≤ t ≤ t1,

(1, t

t2
) if t1 < t ≤ t2.

(3)

Assuming that the radius of the robot is equal to 0.5 m, determine (numerically) values of t1
and t2 that will place the robot at (x, y) = (1.93,−2.16) at t = t2 given that the robot starts
(at t = 0) in (x, y) = (0, 0) with ϕ = 0. What is the final value of ϕ? Also, plot the trajectory
(x(t), y(t)) for the robot.

The interface to your Matlab program (which you should submit along with your report),
called IntegratePosition should be as follows

>> [x, y, phi] = IntegratePosition(t1,t2);

where (x, y) and ϕ are the final values of the position and the heading of the robot, respectively.
(The ”,” on the left hand side might not be needed in some versions of Matlab).

1

2

Figure 2: A two-dimensional laser range finder.

Problem 1.2, 3p, Simulation of laser range finders

A laser range finder is a sensor that uses time-of-flight measurements of reflected laser beams
in order to obtain a distance map over a large range of angles. Both 3D and 2D laser range
finders exist, but here we will only work with the 2D version. Consider the robot shown (from
above)in Fig. 2. A 2D laser range finder, with opening angle γ is mounted (centrally) on top
of the robot. The laser range finder sends out N rays, separated by the angle δγ = γ/(N − 1).
The range of the sensor is L. Thus, for objects located at a distance r ≤ L (along a ray),
the sensor returns r. If no object is detected along a ray, (i.e. if r > L), the sensor returns
a 0. Hence, the complete reading of the laser range finder will be a vector with N elements,
containing distance values for the N rays.

(a) Write Matlab functions implementing this type of laser range finder. First, write a func-
tion for creating the sensor, namely:

lrf = CreateLaserRangeFinder(name,relativeangle,size,nr,openingangle,range,L);

where relativeangle determines the forward direction of the sensor (i.e. the direction of the
central ray, if N is odd), size the size of the visual representation (in Matlab), and nr is the
number of rays. Next, write a function for reading the sensor, namely

lrf = GetLaserRangeFinderReading(lrf, arena);

The sensor should send out nr rays, and obtain distance readings as described above (note: you
do not need to model the time-of-flight - it is sufficient simply to measure directly the distance
to the nearest object along the ray). You may use the functions GetDistanceToLineAlongRay
and GetDistanceToNearestObject implemented in ARSim. Finally, modify the Matlab func-
tions InitPlot and ShowRobot so that your laser range finder is plotted as a filled circle, and
the rays as lines, visible only for rays such that r < L.

(b) Dissect the functions GetDistanceToNearestObject and GetDistanceToLineAlongRay,
and explain (by drawing appropriate figures and explaining the equations) in detail how they
work.

(c) Finally, use your laser range finder together with the functions available in ARSim to
obtain the readings of the laser range finder in the situation shown in the right panel of the
figure. The robot is located at (0, 0), with its forward direction pointing in the direction ϕ = 45
degrees, and the central ray of the laser range finder pointing in the same direction. The lower
left corner of arena object 1 is located at (−0.5, 2.0). The lower left corner of arena object 2
is located at (3.5, 1.0). Both objects are squares with side length a = 1.5m. Let the opening
angle of the sensor be 45 degrees, and assume that the number of rays is equal to 9 and that
the range L is equal to 5.0 m. Note that the figure is schematic (not to scale). Do not forget
to submit the Matlab files, as described in the general instructions above.

Figure 3: Illustration of the behaviors in problem 1.3.

Problem 1.3, 3p, Simple hand-coded behaviors

Simple behaviors for autonomous robots can sometimes be generated by hand. In such cases, a
behavioral representation that is easy to interpret is, of course, chosen. In this problem, we will
use if-then-else-rules as the behavioral representation. Thus, each behavior should consist
of conditions (involving e.g. sensor readings) of the general form

if (CONDITION)

<ACTION1>

elseif (CONDITION2)

<ACTION2>

else

<ACTION3>

end

This is just an example: Of course, the number of actions can vary from case to case, as can the
complexity of the conditions. It is also possible, in principle, to have several layers of nested
if-then-else-clauses.

(a) Use a behavioral representation of the kind above to generate the behavior wall-following.
When placed in a arena, containing only walls (i.e. no other obstacles) the robot should first
find a wall, and then follow it, as exemplified in the left panel of Fig. 3. No particular action
need be taken when the robot reaches the end of the wall (i.e. you do not need to implement
collision avoidance). (1p)

(b) Again using an if-then-else-representation, generate a behavior for corner-positioning

(you may, of course, start from the behavior generated in (a)). In this problem, the robot
should find a wall, follow it until it encounters a perpendicular wall (assuming that walls are
placed in a perpendicular fashion in the arena), and then adjust its heading so that the front of
the robot points directly towards the corner, i.e. at a 45 degree angle (or as close as possible)
to either wall. The behavior is illustrated in the right panel of Fig. 3. (2p)

For these problems you should download and start from ARSim (unchanged) from the web
page, and you should modify (and hand in) the following files: CreateBrain.m, BrainStep.m
and TestRunRobot.m. These files will be copied into ARSim, and the submitted behaviors will
then be tested. Any number of variables may be introduced in CreateBrain and BrainStep.
You should also submit a report describing your behaviors, with a figure illustrating each
behavior, along with a description of how the behavior is intended to work. Note: you may
modify the robot in TestRunRobot e.g. by adding (or removing) IR sensors. However, the
sensor range should be at most 0.8m, and the arena size should be at least 4x4 meters. Note
also that the only information that may be used (from an IR sensor) is the fuzzy reading
obtained from the variable Reading contained in the IR sensor. Also, it is not allowed to use
odometers and compasses; only IR sensors are allowed in this problem.

