
Chalmers University of Technology
Department of Applied Mechanics

Home problems, set 2, FFR125/FIM760 Autonomous agents 2008

General instructions

Home problems set 2 consists of four parts. The maximum number of points is 15, and a
minimum score of 6 points is required in order to pass. Incorrect problems will not be returned
for correction, so make sure to check your solutions and programs carefully before submitting
them. In order to maximize the utility of your efforts, carefully follow the instructions given
below:

1. Hand in your solutions, via email to krister.wolff@chalmers.se, no later than 17.00
on 2008-03-10. Late hand-in will result in a deduction of points!

2. Make sure to include your name and (if available) civic registration number (personnum-
mer).

3. Read the problem formulations carefully, to make sure that you provide clear answers to
all questions.

4. The solutions should be given in the form of a brief report in PDF, PS, MS Word, or
ODT format, for each problem. The programming code alone is not to be considered as
a report!

5. In analytical problems make sure to include all the steps of the calculation in your report,
so that the calculations can be followed. Providing only the answer is not sufficient.
Whenever possible, use symbolical calculations as far as possible, and introduce numerical
values only when needed. All mathematical expressions in the report should be formatted
(using e.g. MS equation editor).

6. In problems requiring programming, it should not be necessary to edit the programs.
Programs that do not function or require editing to function will result in a deduction of
points.

7. Make your own solutions! You may, of course, discuss the problems with other students.
However, each student must hand in his or her own solution. In obvious cases of plagia-
rism, points will be deducted from all students involved.

8. Collect all your files in one zip file which, when opened, generates one subdirectory for
each problem, i.e. Problem2.1, Problem2.2, Problem2.3, Problem2.4.

Deadline: 20080310, at 17.00!

GOOD LUCK!

S

P3

P1

P2

Figure 1: A robot navigating in a simple arena.

Problem 2.1, 4p, Navigation behavior

Consider the simple arena shown in Fig. 1. Using odometry, the robot shown in the figure is
supposed to navigate from an arbitrary starting point S (see below) to the lower left corner
(P1), then to the upper left corner (P2), then to the upper right corner (P3), and, finally, return
to the starting point S. The robot should recalibrate its odometry at P1, P2, and P3, using
the IR sensor readings (see below) and, possibly, the compass to estimate the position and
heading, as accurately as possible, at these points. Implement the navigation behavior using
IF-THEN-ELSE rules!

Note:

1. The arena should only contain walls (no obstacles), and its size should be 4x4 m.

2. The physical parameters of the robot (e.g. its size) should equal the default values in
ARSim.

3. You should add (and use!) an odometer with the following settings:

odometer = CreateOdometer(’odometer’,0.001,1.0);

and a compass with the settings

compass = CreateCompass(’compass’,0.005);

Only the estimates provided by the odometer and the compass may be used by the robot
during navigation. It is not allowed to use the actual position and heading of the robot.

4. You may add up to 6 standard IR sensors. Their range should be less than 0.5m, and their
opening angle should be at least 0.5 radians and at most 1.5 radians. The nr property (of
the IR sensors) should be at least 3. Only the contents of the reading variable of each
IR sensor may be provided to the robotic brain. It is not allowed to use ray lengths etc.

5. For each run of the program, the starting point S (position and heading) should be chosen
randomly, such that the distance between the robot and the nearest wall is 0.5m or more.

For this problems you should download and start from ARSim, v.1.1.8 from the web page,
and you should modify (and hand in) only the following files: CreateBrain.m, BrainStep.m
and TestRunRobot.m. All other submitted Matlab files will be ignored. The three modified
files will be copied into ARSim, and the submitted behavior will then be tested. Any number of
variables may be introduced in CreateBrain and BrainStep. You should also submit a report
describing your behaviors, with a figure illustrating the behavior as a finite state machine, along
with a description of how the behavior is intended to work.

Goal

Waypoints

Figure 2: The arena used in problem 2.

Problem 2.2, 4p, Potential field navigation

Potential field navigation is a cooperative method for selecting behaviors (or, rather, actions)
in robot navigation. Consider a robot, namely the standard robot in ARSim (M = 3.0 kg etc.),
placed in the arena (without walls) shown in Fig. 2.

The task of the robot is to navigate from its starting point at x = (−3, 0) (heading in the
positive x-direction, as shown in Fig. 2) to a goal located at x = (3, 0), with the potential

Vg = kg(x − xg)
2, (1)

where x is the position of the robot and xg is the position of the goal. There are two quadratic
obstacles in the arena, each with side length 0.5 m. The potentials for the obstacles are given
by

Vo,i = koe
−

(x−xo,i)
2

w2
o , i = 1, 2, (2)

where ko and wo are positive constants, and xo,i, i = 1, 2 denotes the location of the obstacles.
The center of the upper obstacle is located at (0.0, 0.4) and the center of the lower obstacle
is located at (−0.4, 0.0). Since the passage between the obstacles is too narrow for the robot
to pass, some waypoints are introduced in the arena, namely at (−2, 1) (waypoint 1), (0, 1.5)
(waypoint 2), and (2, 1) (waypoint 3). The potentials of the waypoints are given by

Vp,i = −kpe
−

(x−xp,i)
2

w2
p , i = 1, 2, 3 (3)

where kp and wp are positive constants, and xp,i, i = 1, 2, 3 denotes the location of waypoint i.
Waypoint i should be removed if the distance |x − xp,i| is smaller than δ (a constant).

Implement the following navigation method for the robot, by modifying CreateBrain.m,
BrainStep.m, and TestRunRobot (and only these files): After T seconds of navigation (see

below), the robot should set its motor signals σL and σR to 0. Next, it should read off its
location (you may use the exact position of the robot, without noise), determine the requested
direction ϕref (given by the normalized negative gradient of the potential field), set the motor
signals as σL = −σR = ±σ0 (where σ0 is a constant and the choice of sign (±) depends on the
desired direction of rotation) and rotate until its direction is close to ϕref (the exact direction
of the robot may be used). Next, the robot should set the torque values to σL = σR = σ1,
where σ1 is a constant (i.e. it should move along an asymptotically straight line) for another
T seconds, at which point the whole procedure (stopping, determining the desired direction,
rotating) should be repeated again etc. There is no time limit for the orientation procedure,
but each navigation period, during which σL = σR = σ1, should be of length T , as indicated
above.

Determine values of the constants kg, ko, wo, kp, wp, T , δ, σ0, and σ1 so that the robot can
navigate safely from start to goal. Of course, there is no unique solution. You may use ERSim

to find the parameter values, but using ERSim is not a requirement. In your report, you should
list the parameter values, as well as the method you used for finding them. You should also
submit CreateBrain.m, BrainStep.m, and TestRunRobot.m, which will be copied into ARSim

for testing. You do not need to display the waypoints and the goal graphically.

Note! The current version of ARSim requires that a sensor should be present in the robot,
at least if one wants to store the motion of the robot. In this problem, no sensors are needed.
However, in order to be able to solve the problem by modifying only the three files listed above,
you should add a dummy sensor, e.g. an IR sensor (with a single ray, say), whose readings are
not used.

Figure 3: Robot and arena for problem 2.3.

Problem 2.3, 4p, Behavioral organization using the UF method

The utility function (UF) method can be used for behavioral organization in autonomous robots.
Consider the case of a simple exploration robot, taken as the standard robot in ARSim (with
M = 3.0 kg, radius = 0.20 m etc.), but with a single, wide-angle IR proximity sensor (opening
angle 2π/3 radians, range = 0.8 m), located on the edge of the robot’s circular body, as shown
schematically in the left panel of Fig. 3. Use nr = 7 rays in the IR sensor.

The size of the arena is 4×4 m (the walls should be defined as in the default TestRunRobot
in ARSim), with a centrally located, quadratic obstacle with side length L = 1.0 m. The robot
starts at (x, y) = (1, 0), heading in the positive x-direction.

(a) Provide the robot with the two behaviors straight-line navigation (B1), in which the motor
signals σL and σR sent to the two wheels are set to equal values, σL = σR = 0.5, and obstacle

avoidance (B2), in which the two motor signals are set to the values σL = −0.7, σR = 0.7.
Assume that the state of the robot is given by the reading s of the proximity sensor, and

an internal abstract variable x which is identically 0 in B1, and equal to 1 (constant) in B2.
Assume further that the utility functions are given by

U1 = a0 + a1s + a2s
2, (4)

for B1 and
U2 = b0 + b1x, (5)

for B2. Implement (by hand) behavior selection based on the UF method, with B1, B2, U1, and
U2 defined as above, by modifying the files CreateBrain.m, BrainStep.m, and TestRunRobot.m

(and only these files).

(b) Next, let the fitness of the robot be the distance travelled in B1, i.e.

f =
N∑

i=1

∆Si, (6)

where N is the number of time steps in the simulation. ∆Si = 0 if B2 is active and equal to
(∆xL + ∆xR)/2 if B1 is active, where xL = vL∆t and xR = vR∆t are the distances travelled

by the left and right wheel, respectively, in time step i, measured exactly, i.e. noisy odometry
should not be used. Set the time step length ∆t to 0.01s. You may use the exact readings of
the wheel speeds, as obtained from the robot variable in BrainStep.m.

Find values of the parameters a0, a1, a2, b0, and b1 which will allow the robot to move as far
as possible (i.e. to get as high fitness as possible) during a 30 s simulation, without colliding
with the walls or the obstacle (collisions should lead to termination of the evaluation) in the
arena shown in the right panel of Fig. 3. For full points, the robot should obtain a fitness value
of at least 10.0.

You may use ERSim to evolve the best set of parameters, but it is also allowed simply
to search manually (or by any other method of your choice) through the five-dimensional
space spanned by the parameters. In your report, make sure to include a description of the
procedure used for determining the parameter values (as well as the actual values, of course).
Furthermore, make sure to hand in CreateBrain.m, BrainStep.m, and TestRunRobot.m, with
the best values of the parameters a0, a1, a2, b0, and b1 (These files will be copied into ARSim, for
testing the behavioral organization system).

Figure 4: The robot and the arena, on which the occupancy grid is projected.

Problem 2.4, 3p, Exploration behavior

An important problem in robotics concerns mapping, i.e. making a robot generate a spatial
representation of its surroundings. In order to be able to generate a map, the robot must
efficiently explore its surroundings. Your main task in this problem is therefore to design a
robotic brain that generates explorative behavior for the robot in the ARSim v1.1.8 package.

A common representation of maps in robotic mapping is the occupancy grid framework: A
(virtual) grid of cells is projected onto the robot arena, where each cell is of a specific size.
In this particular case, all grid cells are 0.4 × 0.4 m. Consider Fig. 4. Each cell of the grid is
associated with a state, describing the status of the corresponding part of the arena, such as
free, unknown or occupied (hence the name occupancy grid).

In this problem you should implement a robust (meaning that it should actively avoid
collisions) exploration behavior for the simulated robot. That is, given an arbitrary starting
point (x, y, φ), where φ denotes the orientation, the robot should visit as many free arena cells
as possible in a specific amount of time, here set to 30 s (3,000 time steps) of simulated time.
The actual position of the robot is taken as the position of its center of mass. In order to solve
this problem you should use a special version of ARSim v.1.1.8, available for download at the
following web address:

www.am.chalmers.se/~wolff/AA/ARSimExamHP2.4.zip

Except for the files CreateBrain.m and BrainStep.m (in which you should implement the
robotic brain), you must not alter any part of any file in the ARSim package. The robot has
three IR sensors, an odometer, and a compass. You are free to use any of these components
in the robotic brain, but no settings should be altered in the specification of the robot and its
sensors!

The explorative behavior may be hand-coded or evolved. However, the generated brain
should be specified completely in the files CreateBrain.m and BrainStep.m, which you should
submit along with your answers to the home exam. Furthermore, no pre-specified map of

the arena may be used with the robot, neither should the robotic brain be supplied with any
information about the robot’s true position at any time! However, you may use the map created
by the robot as it is being generated (using only the odometric readings to determine the robot’s
position) However, all grid cells must first be initialized to the unknown state every time the
program is started.

Your score will be based on the number of cells visited by your robot, averaged over five
runs. In each re-revaluation, the robot will be started at a (note!) random initial position,
and with a random heading. When running your program for evaluation, the examiner will
simply put your versions of the files CreateBrain.m and BrainStep.m in the ARSim directory,
and type TestRunRobot at the MATLAB prompt. No manual editing of any file should be
necassary in order to run your program!

In addition to the files CreateBrain.m and BrainStep.m, you should submit a (brief)
description of the brain.

