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“Algorithms inspired by the behaviors of real ants”
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Biological background
 Ants are among the most widespread living 

organisms on our planet: 
They have colonized almost every landmass on the 
planet, except Antarctica, Greenland, Iceland and a 
few larger islands.
More than 12000 species(!) are known.

Pharaoh ants                            Leaf-cutter ants
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Biological background
 Ants display an amazing ability to co-operate in order to 

achieve goals far beyond the reach of an individual ant:

A group of Weaver ants bringing leaves together, using their 
own bodies as a dynamic bridge.

 http://www.youtube.com/watch?v=n71abhaadRs
 http://www.youtube.com/watch?v=IBTjQMtbViU

http://www.youtube.com/watch?v=n71abhaadRs
http://www.youtube.com/watch?v=IBTjQMtbViU
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Biological background
 Ants can do collective transport of heavy objects.

Coordination in collective transport of food objects is 
more efficient than single ants moving the pieces: 

Ants doing collective transport
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Biological background

 Further reading:

The ants
by:
Bert Hölldobler, and
Edward O.Wilson
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Biological background
 Collective transport of heavy objects is a complex 

task:
(1) Discover the object.
(2) Realize that it is too heavy for a single ant.
(3) Do recruitment of more ants.
(4) Coordinate the transport.
(5) Overcome dead locks.
Note: 
         There is no specific leader.
         Only short-range communication (sound,           
         pheromones).
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Biological background
 Pheromones: Chemical substances that ants 

deposit on the ground, which can be perceived by 
other ants.

 Stigmergy: Indirect communication through 
modification of the local environment, by e.g. 
deposit of pheromones.
(1) Foraging ants deposit a trail of pheromones.
(2) More ants are then likely to follow the same path.
(3) The (pheromone) trail then becomes reinforced.
(4) Pheromones are volatile hydrocarbons.
=> evaporation
=> trail will eventually disappear  
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Biological background
 Experiment by Deneubourg etal [15]: Study of real 

ants: Linepithema humile (Argentine ants).
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Biological background
 Numerical model developed by Deneubourg etal:

Empirical, based on the previous study.
Simple path; single decision point.
Argentine ants deposit pheromones both on the 
outbound and the inbound part of the motion.
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Biological background
 Deneubourg's empirical, numerical model:

(1) outbound decision point 1 (towards food)
Probability that an ant chooses the short path:

S1 = amount of pheromone on the short path.

L1 = amount of pheromone on the long path.

C = constant (=20), m = constant (=2)

Probability of selecting the long path:

p1
S
=

CS1
m

CS1
m
CL1

m

p1
L
=1−p1

S
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Biological background
 Deneubourg's empirical, numerical model:

(2) inbound decision point 2 (towards nest)
Probability that an ant chooses the short path:

The pheromone levels Si and Li changes over time 
since the ants deposit pheromones.
With real ants, the short path took ~20 s, 
                        the long path took ~20r s,
r = length ratio, is in [1,2]. 

p2
S
=

CS2
m

CS2
m
CL 2

m
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Biological background
 Deneubourg's empirical, numerical model:

Shows good fit with experimental data.

The probabilities p1
s and p2

s.
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Ant algorithms
 ACO algorithms operate by searching for paths in 

a graph.
A solution candidate to the problem at hand is 
represented by a path in the graph.
In order to solve a problem using a ACO it has to be 
formulated as finding the shortest path in a 
graph.
Construction graph                     

N = set of nodes (vertices)
ε = set of edges (connections between nodes)

G : N ,
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Ant algorithms
 Construction graph for ACO:

Artificial ants are released onto
the graph G and move 
according to probabilistic rules.
As they move, they deposit 
(artificial) pheromone 
on the edges.

 Edge eij, connecting node vj to 
node vi is associated with 
a pheromone level τij

 Symmetric graph is assumed here (τij = τji).

 Asymmetric graph is a directed graph (τij is not = τji)
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Ant algorithms
 We shall consider the Travelling salesperson 

problem (TSP) for describing ACO:
The aim in TSP is to find the shortest possible path 
that visits each city once (and only once!), and in 
the final step returns to the city of origin.
vi = nodes that represent the cities.

eij = straight-line paths connecting city i to city j.

n = number of cities (nodes)
The number of possible paths is: 

That number grows rapidly with n.

1
2
n−1!
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Ant algorithms
 Ant system (AS) algorithm: Solve the TSP over n nodes 

using a set of N artificial ants, which are released onto 
the construction graph G:
Solution candidate = a path, e.g. (2, 5, 3, 4, 1).

Starts with an empty list of nodes: S=ø
For each movement the index of the current node (city) is 
added to the list of nodes.
Tabu list LT(S): the indices of the already visited nodes.

In every step an ant chooses its move probabilistically, 
based on:
(1) pheromone level τij, and

(2) distances between current node vj and the potential 
target nodes.
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Ant algorithms: AS
 Probability of an ant taking a step from node j to 

node i:

where ηij = 1/dij, dij = Euclidean distance

           α and β are constants.
 In each step, the current node must be added to the 

tabu list LT(S).

 When all nodes have been visited once, the tour is 
completed by a return to the city of the origin. 

p e ij∣S =
ij

ij


∑
l∉LTS 

lj

lj

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Ant algorithms: AS
 After one iteration, i.e. all the N ants have been 

evaluated, the pheromone levels are updated.
Pheromone level on edge eij deposited by ant k:

where Dk = length of the tour generated by ant k.

Total increase of pheromone level on edge eij :

 ij
[ k ]
={

1
D k

if ant k traversed e ij

0 otherwise

 ij=∑
k=1

N

ij
[ k]
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Ant algorithms: AS
 Complete updating rule, including evaporation:

ρ = evaporation rate ]0, 1]

Note that all edges in the graph is updated 
simultaneously!
Thus, edges that are not visited will only evaporate.

ij 1−ijij
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Ant algorithms: AS
 The free parameters in AS:

α = 1
β in [2, 5]
ρ = 0.5
N = n (i.e. the number of ants equals the number of   
       nodes in the graph)

Empirically known to give good performance over a 
large range of problems.
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Ant algorithms: AS

 Initialization of pheromone trails:

N = The number of ants.
Dnn = nearest-neighbor tour (starting at a random      
       node and at each step move to the nearest         
       unvisited node).
See Algorithm 4.1 for a summary of AS.

ij=0=N
1

Dnn
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Ant algorithms: TSP example
 Example 4.2: Computer simulation of AS applied to 

the TSP:

50 cities, 50 ants.
Several parameter combinations were tried:
100 runs for each combination.
200 iterations for each run
10000 evaluated paths for each run
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Ant algorithms: TSP example
 An instance of the TSP. Iterations 1, 2, 3, 5, 10, 100.
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Ant algorithms: TSP example
 The algorithm is rather insensitive to the choice of 

parameters:

Best path found so far: D* = 127.28
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Ant algorithms: MMAS

 Max-min ant system (MMAS):

Similar to the Ant systems algorithm, but exploit 
good candidate solutions more strongly:

Only the “best solution” ant allowed to deposit 
pheromone, either defined as:
(1) best in current iteration, or
(2) best so far.
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Ant algorithms: MMAS
 Let Db denote the length of the current best tour. 

The change in pheromone levels are then given by:

Note that all edges are updated!
Only those visited by the best ant receive positive 
contributions.

 ij= ij
[b ]

ij
[b ]
={

1
D b

if the best ant traversed edge e ij

0 otherwise
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Ant algorithms: MMAS
 Strong exploitation of good solutions may lead to 

stagnation.
=> After update:
the levels are modified according to:

τmin defines the lower bound of the probability of 
visiting edge eij

=> Convergence theorem B.3.2

ij 1−ij ij

if ijmax⇒ ij max

if ijmin⇒ijmin
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Ant algorithms: MMAS

 Pheromone initialization:

=> greater degree of exploration in the early stages.
 What is the value of τmax ?

Theoretical upper limit of pheromone level, for any 
edge eij [B.3.1]:

D* = length of the optimal tour.

ij=max∀ ij∈[1, n]

1
 D∗
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Ant algorithms: MMAS
 During optimization D* is not known...

Therefore set:

Db = length of the current best tour.

Initially, take:

Whenever a new best tour is found, update τmax 

using Db. => τmax changes dynamically. 

max=
1

 Db

ij=max=
1

D nn
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Ant algorithms: MMAS

 τmin is set empirically:

for TSP with n>>1.

min=
max1−

n
0.05

 n
2
−1 n

0.05
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Ant algorithms: MMAS

 The MMAS can get stuck in a local optima:
Restart the algorithm using the most recent 
estimate of D*.

 Better results for the TSP can be obtained by 
alternating the definition of the best solution:
(1) best in current iteration, or
(2) best so far.
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Ant algorithms: MMAS
 Example 4.3. Max-min ant system applied to the 

same instance of the TSP as in example 4.2:

Generally wider distribution of results than for AS, 
but in several cases also better results than for AS.
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Applications of ACO
(1) Problems involving routing: Telecomunication 
networks, TSP, 
(2) Job shop scheduling:
n jobs, consisting of a finite sequence of operations 
are to be processed in m machines, in the shortest 
possible time. Constraints regarding the order of 
precedence between the operations.
(3) Applications that are inspired by the behaviors of 
real ants are common in swarm robotics:
(3.1) Co-operative transport of heavy objects using    
         autonomous robots.
(3.2) Dynamic bridge-building
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Applications of ACO

 Co-operative transportation: Box-pushing task
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Applications of ACO

 Swarm-bot project: Dynamic bridge-building
 Cooperative transport:
 http://www.youtube.com/watch?v=CJOubyiITsE

http://www.youtube.com/watch?v=CJOubyiITsE
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