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Applications of EAs
• (1) Evolution of efficient gaits with an autonomous biped 

robot using visual feedback.

• (2) Evolutionary optimization of bipedal gait in a physical 
robot.

• (3) Structural evolution of central pattern generators for 
bipedal walking in 3D simulation.

• (4) A general-purpose transportation robot - a summary of 
work in progress. Mandatory paper!

• (5) Evolving 3D model interpretation of images using graphics 
hardware.

• (6) Optimization of brake utilization for  heavy-duty trucks.

• (7) Driver sleepiness detection - DROWSI.
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Evolutionary robotics

• ER is a subfield of robotics, in 
which evolutionary algorithms 
(EAs) are used for generating 
robotic brains or bodies, or both.
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Evolutionary robotics
• Initial population 

generated randomly.

• A robotic control 
system decoded from 
each chromosome.

• The resulting control 
system is then 
evaluated in a robot, in 
a given environment

• The fittest individuals 
reproduce.
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Online optimization of gaits 
in a real, physical robot I

Application 1
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Evolution of efficient gaits with 
an autonomous biped robot 

using visual feedback

• K. Wolff, P. Nordin

 Chalmers University of Technology, 
Göteborg, Sweden
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The robot
• Humanoid robot 

Elvina
– 28 cm tall
–  fully autonomous 

robot
–  vision and 

proximity
– 14 dof

Application 1
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Experiment set up
• Goal:

– optimize the robots 
gait, make it walk 
faster, straigther, 
and in a more 
robost way, than it 
previously did.

Application 1



Applied Mechanics

© 2010 Krister Wolff, PhD, Chalmers Univ. of Tech.ISD Programme Artificial Intelligence 2

Representation

• A chromosome, specifing a gait 
cycle:

Application 1
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Gait
• Elvina’s walking 

cycle:

Application 1
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Implementation

• Standard GA, tournament selection

• Creep mutation

• Averaging crossover

Application 1
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Evolutionary algorithm
• Implementation

– Population 
• 30 individuals 
• Individuals randomly created with a uniform 

distribution of genes, over a given, empirical search 
range

– Steady-state tournament selection

– Crossover:

– Mutation: 

Application 1



Applied Mechanics

© 2010 Krister Wolff, PhD, Chalmers Univ. of Tech.ISD Programme Artificial Intelligence 2

Fitness
• The camera is used to determine how 

straight the robot moved during the trial. 

–

• The angular deviation, Θ, is the difference 
from the desired (straight) path of 
locomotion and the performed path.

Application 1
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Fitness

•Fitness is a product of walking 
velocity and how straight the 
robot walked:

Application 1
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Results

• The best evolved individual fitness: 
0.17

• The best hand-coded gait fitness: 
0.11, i.e. 55% improvement (mostly 
due to a straighter
path of locomotion)!

Application 1
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Conclusions from application 1
• Lesson learned:

– Evolving efficient gaits with real physical 
hardware is a challenging task…

• It is time consuming. Feedback is slow, and 
the experiment requires manual supervision 
all the time.

• It is extremely demanding for the hardware!

• On-line evolution in hardware constrains the 
number of generations.

Application 1
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Online optimization of gaits 
in a real, physical robot II

Application 2



Applied Mechanics

© 2010 Krister Wolff, PhD, Chalmers Univ. of Tech.ISD Programme Artificial Intelligence 2

Evolutionary optimization of 
bipedal gait in a physical robot

• K. Wolff, D. Sandberg, M. Wahde

 Chalmers University of Technology, 
Göteborg, Sweden
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EA in a real robot
• The Kondo robot

– 17 DOFs
– No sensors
– FAST!

Application 2
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Experiment

• Online optimization of 
hand-coded gait 
pattern

• Similar to previous 
experiment, but new 
states were added.

Application 2

file:///home/krister/Documents/ChalmersWork/20101126/Lect.06.ApplicEAs/Pres/Lect06ApplicationsOfEAs.odp/E:\MyProjects\KW_DoctoralThesis\Presentation\PA040075.MOV
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Fitness

• TSG = time for individual executing the 
standard gait.

Application 2
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Standard gait and best gait
Application 2
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Gait
Application 2
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Best evolved gait
Application 2



Applied Mechanics

© 2010 Krister Wolff, PhD, Chalmers Univ. of Tech.ISD Programme Artificial Intelligence 2

Conclusions from applications 1 and 2
– Application 1:

• A more stable gait was obtained.
– Application 2:

• The walking speed increased by 65%.
• Structural modifications of the gait program.

– Possible to obtain significant improvements of 
bipedal gaits with an EA in a real physical 
bipedal robot.

– Typical experiment duration: 24 man-hours 
(Application 2, 900 evaluated individuals).

Application 2
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Structural evolution of central 
pattern generators for bipedal 

walking in 3D simulation

• K. Wolff, J. Pettersson, A. Heralic, M. Wahde.

Adaptive Systems Research Group, 
Chalmers University of Technology, 

Göteborg, Sweden

Application 3
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Objective

• Bipedal gait synthesis for a simulated 
robot by structural evolution of CPG 
networks.
– That is, both CPG network parameters 

and feedback network interconnection 
paths are determined using an 
evolutionary algorithm (EA).

Application 3
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Motor Systems Hierarchy
• Key elements:

– Central pattern generator 
(CPG)

– Higher motor centers
– Feedback circuits

• Hierarchical 
organization:
– Allows for the lower levels 

to control reflexes
– Higher levels give 

commands without 
having to specify the 
details

Application 3
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The robot
Application 3
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Central Pattern Generators
• CPGs are neural circuits capable of producing 

oscillatory output given tonic  (non-oscillating) 
input

• CPGs have been extensively studied in 
animals:
– simple animals; lamprey, salamander

– complex animals; cats 

• Observations support the notion of CPGs in 
humans:
– treadmill training of patients with spinal cord lesion

Application 3
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The Matsuoka oscillator

ui = inner state
vi = degree of self inhibition
τu and τv time constants
u0 = bias (tonic input)
wij = connection weights
yi = output

Application 3
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The Matsuoka oscillator
• Frequency variation occurs if the time 

constants τu and τv are varied.

Application 3
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The Matsuoka oscillator
• Amplitude variation occurs if the bias u0 is varied

Application 3
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CPG network
• An arrow indicates the possibility of 

connections

Application 3
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Feedback network
• Waist, thigh, and leg angles, and foot contact

Application 3
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GA optimization

• Intuitive design and manual tuning of 
parameters of CPG networks is 
difficult and time-consuming =>
optimal performance cannot be 
guaranteed!

• Evolutionary algorithms are very 
suitable for this kind of ”open-ended” 
optimization and design.

Application 3
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Support structure
• A massless support structure was used in the 

early stages of the EA runs, in order to generate 
natural, upright gaits.

• Helps the robot to balance.

Application 3



Applied Mechanics

© 2010 Krister Wolff, PhD, Chalmers Univ. of Tech.ISD Programme Artificial Intelligence 2

Evolutionary algorithm
• Objective function: f (i) = |x - y|

• [Distance walked forward ] – [sideways deviation]

Application 3
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Evolutionary algorithm

• A ”standard” GA
– Population of 180 individuals
– Mutation, no crossover

– Tournament selection, size: 8, psel = 0.75

– Fitness function: f = |x - y|
• [Distance walked forward ] – [sideways 

deviation]

Application 3
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Evolutionary algorithm

• Genome, fixed length
– CPG network chromosome:

• Binary, len = 32, connection[i] = 0,1
• Real, len = 32, weights (sign and strength) 

– Feedback network:
• Real, len = 20, weights (sign and strength) 

– Three chromosomes with 84 genes

Application 3
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Results
• Fitness progress:

– Fitness landscape with sparse, narrow peaks 
(low average fitness after many generations).

Application 3
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Results
• Best individual

Application 3
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Conclusions from 
application 3

• Stable bipedal gait was generated.
• Support structure:

– Four point did not help much (=> cheating)
– Two point support was useful
– Without support, often stuck in local optima

• More feedback could lead to improved 
control and robustness

• Only straight line locomotion has been 
investigated in this study!

• Transfer the results to a real robot in the 
future.

Application 3
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Simulation vs. Real robots
• Simulation:

– Fast, (relatively) easy to parallelize.

– EAs usually require a large number of evaluations 
=> Simulations are dominating in the ER field.

– Hard to model [environment + robot] accurately 
=> Reality gap!

• Real, physical robots:
– Much more challenging!

– Evaluation of individuals slow (real time).

– But in ER no model is required in order to control 
the robot = > reality gap is NOT an issue!
=> Motivates the use of ER (in real robots).
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A general-purpose 
transportation robot 

- a summary of work in 
progress

Application 4
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Project partners

• Sweden:
– Chalmers University of Technology, 

Göteborg

• Japan:
– Waseda University, Tokyo
– University of Tsukuba
– Future University, Hakodate

Application 4
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Research objectives

• Develop autonomous robots for guarding tasks, 
or internal delivery of goods.
– Intended for use, without human supervision, in 

unstructured environments :
Hospitals, offices, industries, etc:

• Evaluate and further develop the Utility function 
(UF) method for behavior selection in 
autonomous robots.

Application 4
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Example: A delivery task
Target position

Starting position
Application 4
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Behavioral selection using the utility 
function method: A case study involving a 

simple guard robot

• M. Wahde, J. Pettersson, H. Sandholt, K. Wolff

Adaptive Systems Research Group, 
Chalmers University of Technology, 

Göteborg, Sweden

Application 4
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The robot
• Conceptual model, 1st, and 2nd prototype

Application 4
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Main challenge

• Behavior selection system
– Behavioral organization system must be 

sufficiently general.

– Trade-off between efficiency, and safety and 
self-preservation

• UF method foundation:
– Robotic brains (control systems) are built in a 

bottom-up fashion, from simple behaviors.

– Behavior-based robotics (BBR) approach.

Application 4
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Background

• Derived from economic theory and 
game theory [1].

• Utility: common currency for 
comparing the outcome of possible 
situations.

• Arbitration method.

Application 4
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Utility function (UF) method [3]

• Each behavior is associated with a utility 
function that depends on the state 
variables.

• Behavior selection: the behavior with 
highest utility is active.

Application 4



Applied Mechanics

© 2010 Krister Wolff, PhD, Chalmers Univ. of Tech.ISD Programme Artificial Intelligence 2

Utility function (UF) method [3]
• Utility functions (normally polynomials in 

the state variables) are optimized in 
simulations, using an EA.

Application 4
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Utility function (UF) method
• Polynomial ansatz:

• external var:s (sensor readings): si

• internal physical var:s (battery level) pi

• internal abstract var:s (hormones) xi

• coefficients: aij

Application 4
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The problem

• How to set the coefficients aij ?

• In the UF method, this is done using 
an evolutionary algorithm (EA). 

• Fitness is often associated with a 
given task behavior.

Application 4
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A standard EA
Application 4
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Simple guard robot (example)

• Arena patrolled by robot:

• Fitness: Time spent in navigation behavior.

Application 4
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Behaviors
• Straight-line navigation (B1) (task 

behavior)
• Obstacle avoidance (B2)
• Energy maintenance (B3)

– Corner seeking (B3.1)
– Battery charging (B3.2)

• B2 and B3 are auxiliary
behaviors

Application 4
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Utility function (UF) method
• Simple, illustrative example (movie):

Application 4
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Conclusions from simulation 
example

• Systems for appropriate behavior selection 
were found, typically after the evaluation 
of a few thousand individuals.

• The best solutions could be found using a 
higher (3 or 4) polynomial degree.

• For lower polynomial degrees (1-2), 
solutions can be found more rapidly.

Application 4
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Summary and conclusions

• The UF method have been rigorously tested 
in several simulation studys.

• UFLib software package has been developed.
– Availible for free, for academic use.

• Several transportation robot prototypes have 
been developed.

Application 4
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Application 4
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Current work: Extended UF

• Application at ITRI, Taiwan: EUF method

Application 4
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Current status: Extended UF
Application 4
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Autonomous SLAM

Distance: 159.2 m, time: 939.1 s.

Application 4
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A

B
Autonomous SLAMApplication 4
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Autonomous SLAM
Application 4
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Autonomous SLAMApplication 4
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Autonomous SLAM
Application 4
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3D interpretation of 
images 

• Evolving 3D model interpretation of 
images using graphics hardware
– F. Lindblad, P. Nordin, and K. Wolff
– In Proceedings of the 2002 IEEE 

Congress on Evolutionary Computation, 
CEC2002. Honolulu, Hawaii, USA.

Application 5
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Optimization of brake utilization 
for  heavy-duty trucks 

General reference: 
www.me.chalmers.se/~mwahde/AdaptiveSystems/Publications/LingmanWahdeAV
EC2002.pdf

Application 6
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Driver sleepiness 
detection

Application 7

See this link for David Sanberg's Licentiate thesis:
http://vtiextweb.vti.se/11936.epibrw

http://vtiextweb.vti.se/11936.epibrw
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Final remarks
• Why would one use EAs for optimization?   

-EAs can handle non-differentiable objective functions. Classical 
optimization methods usually requires information about 1:st or 2:nd order 
derivatives.

-EAs are suitable for optimization problems that lack a complete 
mathematical model: EAs can be used with objective functions whose 
values can only be obtained as a result of a (costly) simulation, or using 
hardware-in-the loop (HIL).

-EAs can handle complex problems with many local optima and a 
varying number of variables (as in optimization of neural networks).

• The power of EAs stems mainly from its parallel search. Note, however, 
convergence towards a suboptimal result can occur!

• However, deep knowledge about the problem domain in question is 
required!

• The application domain for EAs is huge->
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Application domains GA/GP
• Numerical optimization,Function fitting, data 

mining, classification, biotechnology, financial 
market, robotics control, etc., etc. 

• A comprehensive overview can be found in tables 
12.2-12.6 in:
– Banzhaf, W. et al (1998). "Genetic Programming - 

An Introduction: On the Automatic Evolution of 
Computer Programs and Its Applications."  Morgan 
Kaufmann.
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Thanks for your attention!

See the web page for these lecture 
slides
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