Evolving 3d model interpretation of images using
oraphics hardware

Fredrik Lindblad

Peter Nordin

Krister Wolff

Complex Systems Group
Department of Physical Resource Theory
Chalmers University of Technology
SE-41296 Goteborg, Sweden
{nordin, wolff}@fy.chalmers.se

Abstract - We present a novel approach for 3d-
scene interpretation with numerous applications, for
instance in robotics. The models are rendered using
3d graphics hardware and DirectX. Both artificial and
real images were used to test the system. More than
one target image can be used, allowing stereoscopic
vision. These experiments present results of interest-
ing generalization.

I. INTRODUCTION

Vision, or interpretation of images, is one of the tasks
that are easily performed by the human brain, but
that are very cumbersome for computers. A program
that could quickly interpret an image in terms of three-
dimensional models would be very useful for robotics.
With a 3d model that matches the scene that a robot sees,
it could understand its environment better and move
smarter. Other applications could be image compres-
sion. Since most real images and movies depict a three-
dimensional world, a representation in the same number
of dimensions could possibly be the most effective choice
[1]. Graphics processors nowadays can in general han-
dle 3d graphics. Since they are specialized in the tasks
involved in rendering scenes, they are much faster than
the central processing unit. This motivates the use of
graphics hardware when calculating how good a candi-
date matches the target image. Using graphics hardware
restricts us to simply use some kind of difference between
target and rendered image as the fitness, but on the other
hand we expect to be able to perform those calculations
very rapidly. In this experiment we use evolutionary algo-
rithms [2] to search for 3d-models corresponding to given
target images.

II. METHOD

The learning method is a conventional steady-state lin-
ear GP algorithm. The method of steady-state tourna-
ment selection is used to select individuals to breed. This

implies that there are no well-defined generations but a
successive change of the population [2] and [3]. Four
different individuals are randomly picked from the pop-
ulation and get to compete against each other in pairs.
Their performance is evaluated using a fitness function
and the two winners get to breed. The offspring, pro-
duced by recombination and mutation, replace the two
loser individuals in the population.

A. Representing the genotype

Its objects and its general state represent each individ-
ual. The objects are stored in a graph. There are two
types of nodes, which are positions and objects. A posi-
tion is a relative translation and rotation that affect every
object in its sub tree. It also contains the type of con-
nection that it forms. The four available types are ’free
object’ (no constraints), 'near parent’, ’flat on ground’
and 'flat on top of parent’. The plane y = 0 is taken to
be the ground. The three size scalars, a color and the
type of object represent an object. Currently, 'block’ is
the only type that is available, but other could be added,
e.g. cylinders and spheres. Every position has a child
node, which is an object, and every object has a parent
position. An object can have any number of children, of
which all are positions defining the relative position for
each sub tree. So, in the graph there are tree structures
with positions at the first level, objects on the second and
so on. The reason to use a graph was to make shared sub
trees possible. If a shape is present more than once in a
scene, then once one of the instances is found, it can du-
plicate by having another object point to the same place.
Currently, this feature is not used, because neither ini-
tialization nor genetic operators create shared sub trees.
In addition, each individual has a list of entry points in
the graph. These represent the set of independent tree
structures that are the unrelated compound objects of
a model. Review the connection type available for the
positions, ’free object’ and ’flat on ground’ can be asso-



ciated with the top position of an unrelated object, while
‘near parent’ and ’float on top of parent’ are valid for rel-
ative positions of dependent objects. The general state
of the individual is the color of the ground, the ambient
emissive colors in the scene and the direction and color
intensity of a directional light (a light source at infinite
distance). This diffuse color was included to get shaded
objects and shadows. Thinking about how a human in-
terprets an image, it seems that a lot of information of
the 3d structure of a scene is mediated by shading and
shadows.

B. Rendering the phenotype

The individuals are rendered using the DirectX 8 SDK
for Windows and MSVC++. This way, the 3d graph-
ics hardware is easily employed. The high speed of such
hardware is the main motivation for doing 3d interpre-
tation of images the way presented in this text. The
acquired speed using hardware dated year 2000 is of or-
der 1000 renderings per second, including intermediate
calculations. Two functions carry out the rendering, one
that prepare the scene by creating a linear list of objects
with their absolute transformations and one that invokes
the hardware layer. This is separated for two reasons, one
is that the hardware renders the scenes asynchronously
so some optimization can be reached by reordering the
steps in the algorithm and the other is that sometimes
an individual is rendered twice in a row, as we will see
later. Shadows on the ground are also depicted. This
is done manually calculating the projections of the ob-
jects on the ground in accordance with the direction of
the diffuse light source. This method was chosen rather
than the standard automatic technique of making shad-
ows, which involves stencil buffers and shadow volume
rendering. With this method, the diffuse light of the
scene, which creates errors in the color and would be in-
appropriate for the present application, affects shadowed
surfaces.

C. Fitness

The fitness is a weighted sum of the norm difference be-
tween the rendered individual and the target image, and
the complexity of the model. The first term could be
considered as the actual error of the phenotype, while
the second depend on the genotype and induces some
kind of parsimony pressure. Currently, the L; — norm is
used. The idea of the complexity is to promote solutions
that are simpler and more realistic. The complexity is
in turn a sum of the total volume of the objects in the
model and for each connection (position node) a cost is
added that depend on the type of connection. The cost

is for instance higher for ’free object’ since a freely float-
ing object is rarely found in reality. The dependency of
the total volume is motivated both by the preference of
few object rather than many and by a tendency the sys-
tem demonstrated without this pressure, namely to find
negative solutions of a scene. This means that instead
of putting a block where there is one, it puts blocks in
the void and leaves a hole at the block. When calculat-
ing the mean difference between individual and target,
not all pixels are sampled, but only every n:th in the x
and y direction. Skipping pixels was introduced because
the difference calculation turned out to be time costly in
relation to the rendering. If the hardware could do this
step too, much time could be saved. Maybe that it is
possible somehow with the present hardware, e.g. by us-
ing bitblt operations to subtract the two squares and at
the same time contract them to a single pixel with anti-
aliasing turned on. You can in any way question this
skipping of pixels. Just rendering a smaller image would
be even faster. This is true, but the images are already
rendered rather small (100-200 pixels wide) and at this
level the size of the rendered images doesn’t affect the
overall speed of the system very much. To make some
use of all the bits rendered, the offset of the sampling
is chosen randomly for each difference estimation. This
results in a slightly stochastic fitness value, but takes all
bits into account.

D. Selection

The selection is based on standard tournaments with four
contestants. When having more than one target image
(stereoscopic vision), one of the targets is randomly cho-
sen for each tournament. Hence the fitness of the con-
testants and the outcome of the tournament depend on
the current point of view. This, together with the pixel
skipping at sampling mentioned above, add some ran-
domness to the outcome. This makes the fitness of the
best individual fluctuate and may have some implications
on the evolution, as the fitness is not an absolute value.
When the winners have been identified, they replace the
losers and the children are altered using the genetic oper-
ators, mutation and crossover. Crossover is applied once
with some probability, while mutation is repeated and for
each iteration there is some other probability to continue
the loop. In other words the number of mutations ap-
plied obeys an exponential distribution. This way multi
step mutation can occur, though less probable the single
mutations. This is feasible, at least theoretically, as it
allows competitive, local minimum-escaping offspring to
be created.



E. Initial individuals and genetic operators

E.1 Initial individuals

The general state is more or less randomly set. Diffuse
light pointing downwards is made more probable. The
ambient color is set to a fixed value and is never changed
during evolution. This reduces the number of free pa-
rameters without limiting the set of possible states, since
only the relation between the ambient and the diffuse
color is in fact of interest. The color of a pixel is given
by the following equation:

Cpiz = [iamb —+ idz’ff - COS Oé] * Cobj (1)

Here, 4qmp and iq4; 7y denote the ambient and diffuse in-
tensities, cop; is the color of the object and « is the angle
of inclination for the diffuse light onto the surface. You
can see that a transformation to any ambient intensity
can be achieved with no output effect on the phenotype if
you change the diffuse intensity and all the object’s col-
ors appropriately at the same time. The intensity of the
diffuse light is initialized at random, color with less satu-
ration (more gray) colors being more probably selected.
Finally, a small given number of objects are added in the
same way as for mutation, described below.

E.2 Mutation

There are currently five types of mutation. When mu-
tation is invoked, all types occur with some probability
independently of each other. The first one adds an ob-
ject. Its color is picked randomly and its position is cho-
sen to be a random point within the viewing frustum (the
set of visible points). The rotation is also random as well
as the size is also selected randomly, but its expectance
being equal to a given portion of the screen, that is far
objects are more likely to be large. The object is not re-
lated to another so it will be a separate tree and the type
of object will be ’free object’ or ’flat on ground’. The
second changes the position or the object at a random
node in the graph. This is done with a bell-shaped dis-
tribution. Whenever a size or a position is altered, the
objects are made to comply with the type of connection.
This for instance restricts the motion of an object being
'flat on top of parent’. The third attaches an indepen-
dent object to another one. This typically means taking
an object standing on the ground and putting it on top
of another object. The fourth picks a node randomly. If
it is an object, it removes that including the whole sub
tree. If it is a position, it detaches the sub tree, making
it independent. This is the inverse of attach. The fifth
and last mutating operation randomly adjusts the gen-
eral state of the individual, i.e. the diffuse light intensity
and direction.

E.3 Crossover

Crossover is done as normal for tree representations.
Two nodes are randomly selected in the to children and
the sub trees are swapped under the condition that there
is enough space in both individuals for the resulting trees.
Otherwise no change is made.

F. ADDITIONS

F.1 Local minimization

The first generic addition to the algorithm is local min-
imization performed along with the evolution. The idea
is to let the evolution take care of the rough and non-
analytical search and leave the search for local minima
to a quadratic approximation procedure. Or, using ter-
minology of nature, treat the structure of the individual
and the rough changes of parameters as the genotype
and think of the fine-tuning as part of the dynamics of
the phenotype, as the learning during life. When a crea-
ture is born, its constitution gives it the limits, between
which it, when it grows, finds the best solution. It learns
to use its body as good as possible. With this as a moti-
vation, local minimization was introduced. At each step
a number of individuals grows on step. For each step
an individual grows, a parameter within it is randomly
chosen and an approximating quadratic function is esti-
mated. Then the parameter is changed according to the
minimum of the quadratic function. Another idea of local
minimization is to let the offspring grow before it is ex-
posed to tournament. This way a child which is a success
when it comes to structure, but its parameters are not
fine-tuned to the new structure, can have time to grow
by do this fine-tuning and become rightfully competitive
against its predecessors. To include this, each individ-
ual has an age that is set to zero when it is initialized
or born and that increased when it learns by local mini-
mization. A minimum age for tournament participation
is also defined.

F.2 Temporally connected demes

The second generic addition is temporally connected
demes. Demes normally in this field refer to a set of
populations, between which a slow migration of individ-
uals takes place or crossover operations are done across
the borders. The point is to make several paradigms
evolve at once. It is difficult to get more than one sur-
viving paradigm, or species, in a single population, since
crossover normally is very destructive for unequal indi-
viduals. The relation of the demes can be described as
geographical. In this project, the problem of dominat-
ing paradigms was attacked slightly differently. A set
of demes was created, but in addition to geographical



connection for migration, temporal one-way connections
were introduced. This was supposed to model the differ-
ent stages of evolution. By making a chain or a tree of
populations you can simultaneously have one at the dawn
of life and the others at other stages of progress. Several
ways to design the migration from an earlier stage to a
later was tried. The chosen method is to simply replace
the whole population at one position if an earlier stage
connected to it has better individuals. The earlier stage
is then replaced with a randomly picked forerunner. That
way the populations are trickled down in the tree each
time a population outruns one of its successors. The top
or origin populations that result empty are reinitialized.
This was thought to allow several species at one time,
as the temporal structure lets you have several popula-
tions at each stage. It also addresses another tendency
of evolutionary algorithm, namely the need to re-run the
program. When a fairly good result is found, this pre-
vents future experimental behavior, since experimental
individuals have to compete with specialized ones. By
pushing good species downward and thus keeping some
demes at earlier stages, we hope to allow more experi-
mental behavior to be maintained throughout the pro-
cess. And by repeatedly reinitialize some deme; we could
escape the risk of getting stuck in a local minimum. The
program is constructed to reinitialize the origin demes
from time to time even if no outruns occur, to assure
exploration of new, independent paths.

F.3 Color sampling

Moving to the application specific additions, we begin
by looking at color sampling. The idea is that given a
model containing some objects we can actually choose the
best color for each object by calculating the mean of the
colors in the target image for all pixels where the object
is visible in the rendered image. The color of the ground
could the same way be taken as the mean of all pixels
where no object resides. To accomplish this, the indi-
viduals can be rendered in two modes, one with normal
colors and one with colors that supply the program with
the necessary information. In this mode, the diffuse color
of all objects is set to (1,0,0) (red, green and blue compo-
nents) and the ambient is set to (0, n1,ng) where n; and
ng correspond to the index of the node where the object
is situated. With diffuse intensity (1,0,0) and ambient
intensity (0, 1, 1) the resulting color will be (cos a, n1, n2).
By decoding the index for each pixel you know which ob-
ject it should affect. Then contribution can be calculated
using the color equation along with the value for cosa,
the current values for the diffuse and ambient intensities
and the color of the corresponding pixel in the target
image. The same is done for the ground.

F.4 Directed mutation

Directed mutation rely on the application specific
property that you don’t just know the error of the in-
dividual but also the distribution of the error over the
image. Therefore you can favor mutations acting to
change the individual where the error is large, and that
way hopefully speed up the search. The image is divided
into sub squares. For each square the error is calculated
and the index of an object that is visible in the square
is stored. Also, the accumulated error is stored looking
at the squares as a linear list beginning at the top left
corner and ending at the bottom down corner. With
the accumulated error, random coordinates that corre-
spond to the error distribution can be easily produced.
For mutating an individual, this information can be used
to make for instance creation of an object where the er-
ror is large more likely to occur. The indices associated
with each error square are used for mutation that include
existing object, for instance when changing the size.

G. Pre-processing real images

When dealing with real images you have to think of how
the scene is transformed to a bitmap. There are two main
kinds of transformation, the resulting two-dimensional
shape -the projection and the resulting color of each pixel
-the intensity transformation. The first kind includes the
aspect ratio of the bitmap, the type of projection (per-
spective, flat) and the field of view (the zoom). In this
project it is assumed that these parameters are known.
The second kind can be troublesome if the value of the
colors in the bitmap is not proportional to the intensity
in the depicted scene. This restriction is imposed by the
way resulting colors are calculated. Of course, when tak-
ing a picture the colors are limited to an interval. There is
an absolute black and an absolute white level. But this is
modeled in the 3d hardware, since it has that same kind
of interval itself. If the color isn’t proportional to the
intensity, but the transformation is known, the inverse
transformation could of course be applied to the image
to compensate that before starting the evolution. Here,
with assume proportional color. If some transformation
was unknown it could be parameterized and exposed to
the evolution. However, for practical applications it is
reasonable to think that those parameters are once and
for all calculated by hand.

ITIT. EXPERIMENTS

Ten different runs were performed, each with a unique
setup. In all the runs the maximum number of nodes in
each individual’s graph was 30 and the maximum num-
ber of independent objects in was 15. The amount of



memory allocated for the node data of each individual
was 10000 bytes. The width of the images was 100 pixels
and one fourth of the pixels were visited when calculat-
ing difference and sampling colors. Here a selected sub-
set of the settings common for all runs is mentioned. In
the runs with ’fixed light’” marked the direction and in-
tensity of the diffuse light were correctly initialized and
the left unchanged. In all runs but one included multi-
ple, temporally connected demes. Six demes were used;
one origin connected to two second evolutionary stage
demes. Those two were in turn connected to three final
stage demes. In the run with local minimization, only the
three final stage demes applied aging (or growing). The
real image used for target in the last two runs was slightly
manipulated. The background was replaced by the floor
texture using the clone stamp tool in PhotoShop.

IV. RESULTS

In this section we present images of best individuals
produced during evolution in our experiments.

Fig. 1. Target images of run 1 to 8.

Fig. 2. Images of the best individuals of run 1 through run
4 (from top left corner to bottom right corner).

The system has difficulties finding the right values for
the diffuse light. This prevents it from using the infor-

mation carried by shadows and shading, which was the
intention of including diffuse light. Therefore, a couple
of runs were made with fixed diffuse light to see if it then
seems to use this information. In fig. 2, you can see that
both run 1 and 2 has indeed successfully oriented three
blocks each.

Fig. 3. Images of the best individuals of run 5 through run
8 (from top left corner to bottom right corner).

On the other hand, when the diffuse color is not fixed,
the system unlikely finds values even near the correct
answer. Only run 7 and 9 has actually the light coming
from the right direction. So getting the light right need
not lead to victory. The ones that fail have to compensate
this in two ways. First, a block in the target image must
be represented by at least two blocks, to be able to get
both dark and light sides without the aid from the diffuse
light. Second, shadows must be mimicked using dark and
small blocks (e.g. run 4, 5 and 8). Both these phenomena
of course lead to a worse interpretation of the image.

Fig. 4. Target image of run 9 and 10

The fitness value can of course not be compared be-
tween runs with and without color sampling, since the
sampling always minimizes the error for a given model.
What we should compare is the ability to interpret the



target image. You could think that sampling colors
would contract the search space and make the system
better. On the other hand, since color sampling is so
powerful and, in a sense, forgiving (or smoothening), you
could fear that it actually inhibits the search. The com-
puting time of all runs were all approximately one hour,
so we could compare the results to see if any setup seems
to give better results.

Fig. 5. Images of the best individuals of run 9 (left) and run
10 (right).

In the case of color sampling, looking at the images in

fig. 2, 3 and 5, the runs using this feature seem to have
reached a slightly better interpretation than the other.
As an example, runs 9 and 10 differ only in the color-
sampling mode and run 9 looks much better than run 10
even though only half the time was spent.
The graphs in fig. 6 exhibit fluctuations to a degree not
usual for evolutionary algorithms. This have to do with
the mentioned randomness included when calculated the
difference but the difference in fitness depending on which
image is in focus when using stereoscopic vision gives per-
haps the most important contribution. The fluctuations
may impose problems to the algorithm, or they may be
beneficial, making the fitness fluctuate as in nature. In
the best fitness, you can see phases with smaller and
larger fluctuation respectively. This could possibly cor-
respond to individuals being more and less specialized to
one point of view.

V. DISCUSSION

The system show ability to interpret images as three-
dimensional models. The problem of understanding an
image is difficult to formulate, which makes it suitable for
evolutionary algorithms. Evolutionary algorithms would
be suitable applied to the evolution of interpreting algo-
rithms. That is of course when genetic programming has
developed to scope such complex problems. Still, the sys-
tem in this project may lead to other applications than
artificial vision. Omne application could be image com-
pression using 3d models [4]. An interesting thing with
this application is connected to the power of the human
vision. When evolving, the system displays individuals

being tested on the screen. Also, you can always see the
best individual rendered. This way, since humans are so
good at quickly interpreting images, you can get a good
idea of the process. You can for instance confirm that one
kind tends to dominate a whole population, which could
be treated as a reason to introduce demes. The fail-
ure to find the correct diffuse light illustrates one of the
problems of combinatorial search, which evolutionary al-
gorithms have to deal with. The diffuse light, being part
of the general state of the individual, affects all parts of
the image when altered. The properties of the objects,
on the other hand, only locally affect the individual. The
diffuse light could be compared with the top node of a
tree-based representation in a genetic programming al-
gorithm.

VI. SUMMARY

In this paper a system that uses an evolutionary algo-
rithm to interpret images three-dimensionally was pre-
sented. The fitness is related to the difference between
the target image and the rendered image of an individ-
ual. Hardware for 3d graphics was used to be able to
render around 1000 images per second. The system can
partially interpret both artificial and simple real images.
The concept works and there may be other application,
for instance image compression.

References

[1] F. W. DePiero and M. M. Trivedi (1996). ”3-D
Computer Vision Using Structured Light: Design,
Calibration, and Implementation Issues.” Advances in
Computers (vol. 43, p. 243-278).

[2] W. Banzhaf, P. Nordin, R. E. Keller and F. D.
Francone (1998). ”Genetic Programming An Intro-
duction: On the Automatic Evolution of Computer
Programs and Its Applications.” San Francisco: Morgan
Kaufmann Publishers, Inc. Heidelberg: dpunkt verlag.

[3] P. Nordin (1997). ”Evolutionary Program Induc-
tion of Binary Machine Code and its Applications.”
Muenster, Germany: Krehl Verlag.

[4] P. Nordin and W. Banzhaf (1996). ”Programmatic
Compression of Images and Sound.” In J. R. Koza,
D. E. Goldberg, D. B. Fogel and R. L. Riolo, editors,
Genetic Programming 1996: Proceedings of the First
Annual Conference (pp. 345-350). Stanford University,
CA, USA: MIT Press.



