
Matlab coding standard for

Stochastic optimization algorithms, FFR105

v 1.1, 2009-02-02, v 1.2, 2009-08-25

David Sandberg, Mattias Wahde

1 Introduction

When writing code, in most cases you are not only writing for the computer
to understand and make use of your code, but people as well! This, of
course, includes yourself. Will you understand your code a month after
having written it? By writing clear and highly readable code you reduce the
risk of introducing unwanted errors. It is the aim of this coding standard to
help you write such code.

Note that when solving home problems involving programming, you
should use Matlab, and you should follow the code standard described be-
low. Programs that deviate significantly from the code standard will result
in deduction of points even if the code works as intended.

2 Naming practices

When naming a variable (or structure, method global constant etc.) you
should always strive to use a meaningful name that clearly describes the
purpose of the variable. For example a good name for the variable used to
store the number of individuals in a population is populationSize whereas
simply naming the variable n is not recommended. Using long names is
perfectly acceptable; When given a choice, a long but descriptive variable
name is to be preferred over a short name with unclear meaning.

2.1 Variables

For variable names, the first character should be in lower case. If the vari-
able name consists of several words, all words except the first should be-
gin with an upper case letter, and all other letters should be lower case,

1



e.g. aLocalVariable. As stated above, using meaningful names should al-
ways have higher priority than using short names and this is especially so
in the case of variables with a large scope. However, variables with limited
scope can have short names. For example, a variable used for storing a
temporary value within an if-then statement (containing only a few lines
of code between if(...) and end) may very well be named tmpVal. In the
case of a real-valued variable simply naming the variable x suffices.

2.1.1 Iterator variables

Iterator variables should be named using i, j and k. However, in the case of
a loop consisting of many lines of code, a longer and more meaningful name
should preferably be used and should be prefixed with either i, j or k. As
an example, consider the iGeneration iterator variable of the main loop in
FunctionOptimization.m.

2.1.2 Abbreviations

Abbreviations in variable names (as well as in names for methods etc.) are
acceptable in the case of very common abbreviations, e.g. max and html.
Note that the upper and lower case rule above still applies, e.g. cthStudent
not CTHStudent.

2.1.3 Prefixes

As noted above, when using a longer name for an iterator variable, the name
should include a prefix such as i. Also, the same prefix should be used for
indexing variables, e.g. iBestIndividual in FunctionOptimization.m. In
the case of a variable storing an integer quantity, e.g. the number of genes
in a chromosome, the name of that variable should include the prefix n,
i.e. nGenes (nrOfGenes, is also ok).

2.2 Functions

Functions should be named using upper case for the first character of every

word in the function name, i.e. InitializePopulation. Function parame-
ters are named as variables. While variables are often named using nouns,
function names should preferably include at least one verb, since a function
is intended to perform some action. The file name should match the function
name. For example, the file containing the function InitializePopulation

should be named InitializePopulation.m.

2



2.3 Structs

A struct is named using upper case letters the for the first character of each
word in the name, i.e. using the same standard as for function names.

2.4 Global variables and constants

A global variable (declared using the keyword global) should be named us-
ing only capital letters, and with in between words, e.g. A GLOBAL VARIABLE.
However, the use of global variables and constants should be kept to a min-
imum.

3 Code organization and layout

3.1 Whitespace and other layout topics

Use whitespace to group your code in order to make it more readable. Use
vertical whitespace (i.e. blank lines) to form blocks of lines of code, quite
similar to paragraphs when writing normal text. Note that the lines of code
that constitute a block should be cohesive (i.e. the lines of code should be
strongly related to each other) and the formation of the block should be log-
ical. As an example, study the file FunctionOptimization.m. Use horizon-
tal whitespace (i.e. indentation) to group statements, such as if-then-else
and for-loops. Use two blank spaces for indentation, on the form given in
the following example.

if (r < crossoverProbability)

newIndividual = NewIndividualsByCrossover(population,i1,i2,nGenes);

temporaryPopulation(i,:) = newIndividual(1,:);

temporaryPopulation(i+1,:) = newIndividual(2,:);

else

temporaryPopulation(i,:) = population(i1,:);

temporaryPopulation(i+1,:) = population(i2,:);

end

Note the use of the two temporary variables i1 and i2 in the example.
This is perfectly fine as the scope is small. Furthermore, since these variables
are used for indexing, they are prefixed with i.

3.2 Avoid complex statements

In order to improve readability and avoid errors in code, avoid writing state-
ments that each perform many steps of computation. For example, the code
snippet

3



result = (abs(timeSeries.Value(i) - (delta*avg + (1-delta)*gamma))^kappa)* ...

weightLeft/ (1+exp(alphaLeft*(timeSeries.Value(i) - (delta*avg + ...

(1-delta)*gamma)-betaLeft)))+weightRight/(1+exp(-alphaRight* ...

(timeSeries.Value(i) - (delta*avg + (1-delta)*gamma)-betaRight)));

should be written using several statements and temporary variables

x = timeSeries.Value(i);

z = x - (delta*avg + (1-delta)*gamma);

wR = weightRight/(1+exp(-alphaRight*(z-betaRight)));

wL = weightLeft/(1+exp(alphaLeft*(z-betaLeft)));

w = wR+wL;

result = (abs(z)^kappa)*w;

3.3 Conditional expressions

Avoid complex conditional expressions spanning over several lines. Instead,
introduce temporary boolean variables.

if (not(location == BUNKER) && ((sustainedWinds == CATEGORY_2_SUSTAINED_WINDS)

&&(centralPressure == CATEGORY_2_CENTRAL_PRESSURE)))

...

end

should instead be coded as

isCategory2Winds = (sustainedWinds == CATEGORY_2_SUSTAINED_WINDS);

isCategory2Pressure = (centralPressure == CATEGORY_2_CENTRAL_PRESSURE);

isCategor2Hurricane = (isCategory2Winds && isCategory2Pressure);

outsideBunker = not(location == BUNKER);

if (isCategory2Hurricane && outsideBunker)

...

end

4 Code optimization

Whenever you have the choice between (1) clear but slower code or (2)
cryptic and perhaps faster code you should always choose the clear and more
readable code. Do not bother with trying to improve the performance of your
code by vectorization. However, this does not imply that you should not
pay attention to the speed performance of your code. In order to improve
the speed performance of loops you should, for example, always initialize
vectors and matrices before the loop, i.e.

fitness = zeros(populationSize);

for i = 1:populationSize

4



parameterValues = DecodeChromosome(population,i,range,nGenes);

fitness(i) = 1.0/EvaluateIndividual(parameterValues);

...

5 Comments

You should strive to write code that is self explanatory. However, sometimes
it is needed to add information to the code, such as an explanation of a
complex algorithm, information regarding limits or perhaps a motivation.
Add such information in comments, using (%), and try to do so at the
time of writing the code. However, do not overuse comments! Including
unnecessary comments such as

i = 1; % Assigns 1 to the variable i

is not a good idea.

6 Program output

In general, Matlab will print the result of (for example) a function call or
an assignment, unless the line ends with a semi-colon (;). In some case,
particularly when debugging, it can be a good idea to print out quite a
lot of information. However, in the final version of a program, only relevant

information should be printed, and only if the information can be well repre-
sented in text format. Thus, for example, a program for function optimiza-
tion might print the best function value found, as well as the corresponding
variable values, every n

th generation, where n should be sufficiently large
such that the information will appear in the Matlab main window with a
reasonable frequency (i.e. not more than once per second, or so). It is not

good programming practice to dump excessive amounts of irrelevant infor-
mation (or information that cannot be analyzed in real time) to the screen
such as, for example, the entire genome of every individual evaluated in an
EA. In some cases, for example certain applications of image processing, a
text-based representation is not very useful. If, for example, a Matlab pro-
gram generates an image by manipulating an input image, there is no point
to print the RGB values for each pixel to the screen. Instead, the program
might, for instance, display the input image and the processed image.

5


