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Particle swarm optimization

 Contents: MW, pp. 117-137.
 

“Algorithms inspired by flocking behaviors of real 
birds, fish, etc.”

 A model of swarming: BOIDS
 PSO algorithms
 Applications of PSO
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Particle swarm optimization
 Simple local rules generate complex flocking behaviors

 [http://cmol.nbi.dk/models/boids/boids.html]

http://cmol.nbi.dk/models/boids/boids.html
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Particle swarm optimization

 Swarming behavior in animals have shown 
beneficial in:

(1) Reproduction
(2) Food gathering
(3) Avoiding predator attacks: the “needle in a 
haystack”-problem.

The search efficiency provided by swarming is 
what underlies particle swarm optimization (PSO) 
algorithms.
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A model of swarming: BOIDS

 Craig Reynolds: BOIDS

A numerical model introduced for simulation of the 
swarming of bird-like objects (=BOIDS)

BOIDS = Bird-like objects
No leader, only local interactions occur.
Only a few simple, local rules for the interactions

Results in a coherent swarm!
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A model of swarming: BOIDS

 Consider a swarm of N BOIDS:

where pi is the i:th boid.

 Visual range defined for each boid:

“visibility sphere”
r = global constant

S={pi , i=1, ... , N }

Vi={p j :∥x j−x i∥r , j≠i }
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A model of swarming: BOIDS

 Positions and velocities update rule:

xi = position of boid i.

vi = velocity of boid i.

ai = acceleration of boid i.

Δt = timestep

v iv ia i t , i=1,... , N
x i x iv i t , i=1,... , N
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A model of swarming: BOIDS

 The movements of each BOID is influenced by 
three steers:

(1) Cohesion: Stay near the center of the swarm.

(2) Alignment: Align velocity with the velocities of      
      nearby swarm mates.

(3) Separation: Avoid collisions with nearby boids.
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A model of swarming: BOIDS

 Steering vectors.
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A model of swarming: BOIDS
 Cohesion: Center of density of the boids within the 

visibility sphere of boid i: 

 The steering vector representing cohesion:

If no boids are within Vi (=> ki = 0) then set Ci = 0.

 i=
1
k i
∑

p j∈V i

x j , k i=number of boids in V i

c i=
1

T 2
i−x i , T=time constant
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A model of swarming: BOIDS

 Alignment:

Steering vector:

If no boids are within Vi (=> ki = 0) then set li = 0.

li=
1

T k i
∑
p j∈V i

v j ,
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A model of swarming: BOIDS

 Separation:

Steering vector:

If no boids are within Vi (=> ki = 0) then set si = 0.

s i=
1

T 2 ∑
p j∈V i

x i−x j
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A model of swarming: BOIDS

 The acceleration of boid i is obtained by combining 
the three steering vectors:

 Cc, Cl, and Cs are constants, in the range [0,1], 
defining the relative impact of ci, li, and si. 

a i=C c c iC l l iC s si
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A model of swarming: BOIDS

 The steering vectors.
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A model of swarming: BOIDS

 Initialization:
If the initial speed of the boids is too large, the 
swarm will break apart almost immediately!
=> (1) initial speed vi should be set ~0, for all i.

      (1) limit speed to vmax

      (2) limit acceleration to amax

      (3) Each boid should be placed within the             
            visibility sphere of at least one other boid.
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A model of swarming: BOIDS

 The BOIDS model leads to very realistic swarm 
behavior.

 Have been used (with small modifications) in movies 
(e.g. in Jurassic Park, to simulate herding dinosaurs).

 Go to:
(1) http://www.red3d.com/cwr/boids/
(2) http://www.youtube.com/watch?v=rN8DzlgMt3M
(3) http://www.cs.ioc.ee/~ando/boids.php

http://www.red3d.com/cwr/boids/
http://www.youtube.com/watch?v=rN8DzlgMt3M
http://www.cs.ioc.ee/~ando/boids.php
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PSO algorithms

 Based on the properties of swarms.
=> search efficiency.

Particle = Candidate solution.
- Associated with a position and a velocity in the     
  search space.
- A change in velocity depends on the performance    
  of the particle itself and that of other particles.

                                                         A basic PSO --->
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A basic PSO algorithm
 (1) Initialization of the position xi and the velocity 

vi of each particle pi, i=1,...,N.

N is in [20, 40], commonly.
xi and vi are initialized randomly:

r = random number in [0,1] with uniform distribution
N = size of the swarm.
n = number of variables of the problem.

x ij=x minr x max−x min , {i=1,... ,N
j=1, ... , n
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A basic PSO algorithm

r = random number in [0,1] (uniform distribution)
α = constant in [0,1].
Δt = timestep (=1, normally).
xmin = -xmax is a common special case.

v ij=


 t 
−xmax−x min

2
r  xmax−x min , {i=1, ... , N

j=1, ... , n

⇒ v ij=
x minr xmax−x min

 t
, {i=1, ... , N

j=1, ... , n
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A basic PSO algorithm
 (2) Evaluate performance of each particle:

=> compute objective function f(xi), i = 1, ..., N

 (3) Update the best position of each particle, and the 
global best position (minimization).

(3.1)
(3.2)

xi
pb = best position so far of particle i.

xi
sb = best position so far of any particle in the swarm.

if f x i f  xi
pb
: xi

pb
 x i

⇒∀ p i , i=1, ... ,N do :

if f x i f  xi
sb
: x i

sb
 x i
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A basic PSO algorithm
 (4) Update particle velocities and positions.

(4.1) Velocities:

q and r are random numbers in [0,1] (uniform).
c1 and c2 are weights for the social and cognitive 
parts, respectively (= 2, normally).

v ij v ijc1 q
x ij

pb
− x ij

 t
c2 r

x ij
sb
−x ij

 t
, {i=1, ... , N

j=1, ... , n

Cognitive
component

Social
component
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A basic PSO algorithm

 Note:

(a) The contribution of the cognitive component 
determines to what extent the particle uses its own 
(previous) performance as guide towards better 
results.

(b) The contribution of the social component 
determines to what extent the particle uses 
(previous) performance of the other swarm 
members as guide towards better results.
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A basic PSO algorithm
 (4.2) In order to maintain coherence, restrict the 

velocities:

(4.3) Update position of particle pi:

One iteration is now completed.

 (5) Return to (2) unless the termination criterion 
has been reached.

∣vij∣vmax

x ij  x ijv ij  t , {i=1,... , N
j=1,... , n



Krister Wolff, PhD, senior researcher, Chalmers University of Technology  
e-mail: krister.wolff@chalmers.se     url: www.am.chalmers.se/~wolff

CHALMERS

Algorithm 5.1 basic PSO
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Properties of PSO
 Note that there exists many variants on the theme 

of PSO, just as in the case of EAs and ACOs. Some 
variants will now be described:

Best-in-current-swarm versus best-ever.
xsb,e = “best-ever”
xsb,c = “best-current”

Neighborhood topologies
Consider the best particle in the neighborhood of 
particle pi: xi

sb,n
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Properties of PSO

Fully connected.           Restricted connectivity.
Other connectivities can be considered as well.
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Properties of PSO

Neighborhood topologies.
Note:
(a) The topologies are constructed in another, 
abstract space than the visibility spheres.
(b) Neighborhood structures remain constant 
throughout the optimization, whereas the position xi 
in search space do not!

The concept of neighborhoods where introduced for 
the purpose of prevention of premature convergence 
– but it may slow down the speed of convergence!
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Properties of PSO
 Maintaining coherence. 

After removing the stochastic components q and r, 
the particle trajectories will remain bounded only if 
c1+c2<4  (Appendix B.4.1).

Under the influence of q and r, the particle 
trajectories will diverge eventually, even if c1+c2<4!
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Properties of PSO

 Maintaining coherence.
Thus, in order to “control” particle trajectories we 
introduce a limit on particle velocities. Restrict 
velocity of particle pi as:

if vij > vmax set vij = vmax

if vij < vmax set vij = -vmax

∣vij∣vmax=
x max−x min

 t
, j=1, ... , n
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Properties of PSO
 Maintaining coherence.

Alternatively, use constriction coefficients:

Then, trajectories do not diverge if:

v ij  X v ijc1 q
x ij

pb− x ij

 t
c2 r

x ij
sb− x ij

 t  , {i=1,... , N
j=1,... , n

X=
2

∣2−−2
−4∣

, ≡c1c24 , ∈] 0, 1 ]
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Properties of PSO
 Inertia weight.

Determines the relative influence of previous 
velocities on the current velocity:

w = inertia weight.
If w > 1 particle favors exploration.
If w < 1 particle favors exploitation.
Exploration is more important in the early stages.
Start with w=1.4, reduce in each iteration until ~0.3 

v ij w v ijc1 q
x ij

pb
−x ij

 t
c2 r

x ij
sb
−x ij

 t
, {i=1,... , N

j=1,... , n
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Properties of PSO
 Examples 5.2 and 5.3. The Goldstein-Price function:



Krister Wolff, PhD, senior researcher, Chalmers University of Technology  
e-mail: krister.wolff@chalmers.se     url: www.am.chalmers.se/~wolff

CHALMERS

Properties of PSO

 Results obtained using 
(a) Basic PSO, and 
(b) Standard PSO (including inertia weight varying 
from 1.4 to 0.4):
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Properties of PSO

 Craziness operator.
With some (small) probability pcr set:

r = (uniform) random number in [0, 1]

Equivalent to mutations, in connection with EAs.
Biologically motivated, inspired by the behavior of 
flocks of birds.

v ij=−vmax2 r vmax , {i=1,... ,N
j=1,... , n
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Discrete versions of PSO
 Generally, it is assumed that the variables xj take 

real values.
With small modifications PSO can be used with 
integer programming problems (i.e. where the 
variables take integer values only).

 (1) Variable truncation PSO is very                         
      straightforward:
The internal workings of the PSO algorithm are 
identical to the standard (continuous) PSO, but each 
component of the position vector is truncated to 
the nearest integer value.
Truncation occurs both at initialization, as well as 
when updating the new positions.  
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Discrete versions of PSO
(2) Binary PSO. 
Used when binary representation is needed, much as 
in the standard GA case, or yes/no decision making.
Same as standard PSO, but:
(a) Particle position is restricted to the set {0, 1}.
(b) The velocity vij is interpreted as a probability for 
setting the particle position to either 0 or 1, by 
means of an activation function:

v ij =
1

1e−v ij
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Discrete versions of PSO
(2) Binary PSO. σ(vij) is interpreted as the 
probability of setting xij equal to 1. 

Thus, xij is set to 0 with probability 1-σ(vij) .

Specifically,

r = random number in [0,1].
Truncation of velocities is needed in order to avoid 
too high probability of always setting xij to 1:

x ij={0 if r vij 

1 otherwise

∣vij∣vmax≈4
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Applications of PSO
 Optimization of ANNs frequent application of PSO.

PSO algorithms avoid the problems normally 
associated with GAs in connection with ANNs:
(1) Using GA, crossover operator is not very likely to 
produce useful results from two different networks 
=> avoid the destructive effects of crossover.
(2) In PSO there are no completely random 
mutations (velocity vector can be interpreted as 
“almost a gradient”).

 PSOs have shown good performance in recent 
studies (compared with backprop.).
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