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Abstract— Anthropomorphic walking for a simulated bipedal
robot has been realized by means of artificial evolution of
central pattern generator (CPG) networks. The approach has
been investigated through full rigid-body dynamics simulations
in 3D of a bipedal robot with 14 degrees of freedom. The half-
center CPG model has been used as an oscillator unit, with
interconnection paths between oscillators undergoing structural
modifications using a genetic algorithm. In addition, the con-
nection weights in a feedback network of predefined structure
were evolved.

Furthermore, a supporting structure was added to the robot
in order to guide the evolutionary process towards natural,
human-like gaits. Subsequently, this structure was removed,
and the ability of the best evolved controller to generate a
bipedal gait without the help of the supporting structure was
verified. Stable, natural gait patterns were obtained, with a
maximum walking speed of around 0.9 m/s.

I. INTRODUCTION AND MOTIVATION

The great interest in humanoid robots during the last

decade is motivated by the many advantages of bipedal

robots over wheeled robots. First of all, humanoid robots

(and bipedal robots in general) are able to move in areas

that are inaccessible to wheeled robots, such as staircases and

rugged outdoor terrain. In addition, their human-like shape

allows such robots to function in constructed environments,

such as homes or industries which, naturally, are adapted to

people. Furthermore, recent studies [1], [2], [3] have claimed

that people are more comfortable interacting with a robot

with an approximately human shape, rather than a tin can-

like wheeled robot.

However, an obvious problem confronting humanoid

robotics is the generation of stable gaits. Whereas wheeled

robots normally are statically balanced and remain upright

regardless of the torques applied to the wheels, a humanoid

robot must be actively balanced, particularly if it is to

execute a human-like, dynamic gait. Several methods for

generating bipedal gaits have been proposed in the literature.

An important example is the ZMP method [4], where control

torques are generated in order to keep the zero-moment point

within the convex hull of the support area defined by the feet.

However, the success of gait generation methods based

on classical control theory, such as the ZMP method, relies

on the calculation of reference trajectories for the robot to

follow. That is, trajectories of joint angles, joint torques,

or the centre-of-mass of the robot are calculated so as to

satisfy the ZMP constraint [5], [6]. When the robot is acting
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in a well-known constructed environment, the ZMP method

should work well. When acting in a dynamically changing

real world environment, however, the robot will encounter

unexpected situations which cannot all be accounted for

beforehand. Hence, reference trajectories can rarely be speci-

fied under such circumstances. To address this problem, there

has recently been a movement in the robotics community

towards alternative, biologically inspired control methods.

Such methods do not, in general, require any reference tra-

jectory. Typically, robotics researchers employ bio-inspired

control strategies based on artificial neural networks (ANNs)

[7], [8] or central pattern generators (CPGs) [9]. Often some

kind of evolutionary algorithm (EA) is utilized for the design

of the controller [10], [11], [12], [13], and [14].

Clearly, walking is a rhythmic phenomenon, and many

biological organisms are indeed equipped with CPGs, i.e.

neural circuits capable of producing oscillatory output given

tonic (non-oscillating) activation [15]. CPGs have been stud-

ied in several simple animals, such as the lamprey [16] for

which mathematical models have been developed as well

[17], [18]. CPGs have also been studied in more complex

animals, such as cats and primates ([19], [20], [21]), and

there are also observations that support the notion of CPGs

in humans. For example, treadmill training of patients with

spinal cord lesions is assumed to rely on the adequate

activation of a CPG [21].

Developing artificial counterparts to biological CPGs, with

the aim of generating robust gaits for bipedal robots, is an

active field of research. In seminal works by Taga et al.,

[9], [22], a gait controller based on the half-center CPG

model (see below) has been investigated. It was demonstrated

in a 2D simulation of a five-link biped that the controller

made the robot robust against physical perturbations [9].

Furthermore, obstacle avoidance through regulation of the

step length was realized [22].

Shan et al. [11] generated bipedal walking in a 2D simu-

lation using CPGs. A multi-objective genetic algorithm was

used to optimize the synaptic weights in a network composed

of nine CPG units. Reil and Husbands [23] used genetic al-

gorithms (GAs) to optimize fully connected recurrent neural

networks (RNNs), which were used as CPGs to generate

bipedal walking in 3D simulation. They used a GA, with

a real-valued encoding scheme, to optimize weights, time

constants, and biases in fixed architecture RNNs. Their biped

model had six degrees-of-freedom (DOFs), and consisted of

a pair of articulated legs connected with a link. The resulting

CPGs were capable of generating bipedal, straight-line walk-

ing on a planar surface. Furthermore, simple sensory input to



locate a sound source was integrated to achieve directional

walking.

CPGs have desirable properties, such as intrinsic aptness

for the formation of periodic output patterns and adaptation

to the environment through entrainment, for the generation

of gaits and other types of repetitive and stereotypic motions.

Manually tuning the parameters of the CPGs and defining

the feedback and interconnection paths in an optimal way is

a daunting task. In many cases reported in the literature, e.g.

[22], [24], [25], [26], and [27], the design of CPG networks

has commonly been carried out in an intuitive manner; a

time-consuming and difficult process which may lead to sub-

optimal performance. Even in cases where GAs have been

applied, as in several of the references mentioned above,

the approach has generally been restricted to parametric

optimization in a network of fixed architecture.

In this paper, the problem of generating both the structure,

i.e. the network feedback and interconnection paths, and

the parameters of a CPG network controlling a fully three-

dimensional, simulated bipedal robot with 14 DOFs will be

considered, using a GA as the optimization method. The

half-center CPG model, as originally proposed by Matsuoka

[28], will be adopted as the oscillator unit. A challenging

problem, which is seldom mentioned (the papers by Paul

and Bongard [29] are an exception), is the fact that, while

biological organisms have developed their walking patterns

(and, indeed, other behaviors as well), over long periods

of simultaneous evolutionary optimization of both body and

brain, in robotics one attempts instead to provide an already

fixed body structure with a brain capable of generating a

bipedal gait. This poses many problems for a GA-based

approach. For example, if only the distance covered is used

as the fitness measure, a common result is to find individuals

that simply throw themselves forward, rather than walking;

Walking would certainly yield a higher fitness value, yet this

solution may be very hard to find, given the readily accessible

local optimum found by those individuals throwing their

body forward. Thus, the evolutionary process grinds to a halt

almost immediately. Of course, this type of solution can be

avoided simply by adding constraints on body posture as part

of the fitness measure. However, such constraints must often

be added in an ad hoc manner, and they often lead to results

(such as non-natural gaits) that are undesirable. Rather than

changing the fitness measure, one may attempt to change

the body of the robot. Evolving an upright, bipedal gait

from, say, an initial population of crawling individuals would

perhaps be infeasible. However, another option, which will

be considered in this paper, is to add a supporting structure

to the robot, helping it to balance as it starts to walk. Some

different strategies for subsequently removing this support,

while maintaining a dynamically stable gait, will then be

investigated.

II. CENTRAL PATTERN GENERATORS

A. Models from biology

From biological studies, three main types of neural circuits

for generating rhythmic motor output have been proposed,
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Fig. 1. A half-center model (Matsuoka) oscillator network. Excitatory
connections are indicated by open circles, and excitatory connections are
indicated by filled disks.

namely the closed-loop model, the pacemaker model, and

the half-center model. The two former models are described

in [30]. The half-center model, which will be considered

in this paper, was proposed to account for the alternating

activation of flexor and extensor muscles of the limbs of a

cat during walking. The basis of this model is the classical

experiments reported by Brown from 1911 [31] and 1912

[19]. Each pool of motor neurons for flexor or extensor

muscles is activated by a corresponding half-center, or pool,

of interneurons. Another set of neurons provides for a steady

excitatory drive to these interneurons. Between each pool of

interneurons are inhibitory connections which ensure that,

when one pool is active, the other is suppressed. Matsuoka

[28] analyzed the mutually inhibiting neurons and found the

conditions under which the neurons generated oscillations.

B. Mathematical formulation of the CPG model

Commonly, a CPG is computationally modeled as a net-

work of identical systems of differential equations, which

are characterized by the presence of attractors1 in the phase

space [32]. Usually, a periodic gait of a legged robot is a

limit cycle attractor, since the robot periodically returns to

(almost) the same configuration in phase space.

Each node in the network is referred to as a neuron, or

cell. The half-center model mentioned above is commonly

adopted as the biological foundation for a rhythm generator,

see e.g. [9], [11], [22], [24]. The neurons in the half-center

model are described by the following equations [9]:

τuu̇i = −ui − βvi +

n∑

j=1

wijyj + u0, (1)

τv v̇i = −vi + yi, (2)

yi = max(0, ui), (3)

where ui is the inner state of neuron i, vi is an auxiliary

variable measuring the degree of self-inhibition (modulated

by the parameter β) of neuron i, τu and τv are time constants,

u0 is an external tonic (non-oscillating) input, wij are the

weights connecting neuron j to neuron i, and, finally, yi

1Attractors are bounded subsets of the phase space, to which regions of
initial conditions converge as time evolves.



Fig. 2. The leftmost panel shows the simulated robot, and the second panel from the left shows its kinematics structure with 14 DOF. The two right
panels show the robot with its supporting structure, the left one having four contact points, while the right one has two contact points.

is the output of neuron i. Two such neurons arranged in a

network of mutual inhibition (a half-center model), as shown

in Fig. 1, form an oscillator, in which the amplitude of the

oscillation is proportional to the tonic input u0. In addition,

if an external oscillatory input is applied, the oscillator will

lock to the frequency of the input. If the input is removed,

the oscillator smoothly returns to the original frequency.

III. METHOD

In this section the physical simulation environment, the

CPG network structure, the feedback paths, and the evolu-

tionary algorithm will be described.

A. Dynamical simulation

A fully three-dimensional bipedal robot with 14 degrees

of freedom, shown in the leftmost panel of Fig. 2, was used

in the simulation experiments. The simulated robot weighs

7 kg and is 0.75 m tall. The distance between the ground

and the hips is 0.45 m. As shown in the second panel from

the left in Fig. 2, the waist has 2 DOFs, each hip joint has 3

DOFs, the knee joints have 1 DOF each, and the ankle joints

have 2 DOFs each. The hip3 joint, however, responsible for

rotating the leg around its vertical axis, has not been active

here. The CPG network generates torques, which are applied

to their respective joints in order to control the robot. To

guide the evolution towards a natural biped gait, the robot

has been fitted with two different mass-less posture-support

structures, as depicted in the two right panels of Fig. 2.

The simulations were carried out using the EvoDyn simu-

lation library [33], which was developed at Chalmers Univer-

sity of Technology. Implemented in object-oriented Pascal,

EvoDyn is capable of simulating tree-structured rigid-body

systems and runs on both Windows and Linux platforms.

Its dynamics engine is based on a recursively formulated

algorithm that scales linearly with the number of rigid bodies

in the system [34]. For numerical integration of the state

derivatives of the simulated system, a fourth order Runge-

Kutta method is used. Visualization is achieved using the

OpenGL library.

B. CPG network

In the CPG network, which is responsible for the genera-

tion of motions, each joint is assigned a specific half-center

oscillator consisting of two neurons; a flexor neuron and an

extensor neuron. The overall structure of the CPG network

is depicted in Fig. 3.

In order to reduce the size of the search space for the

GA, symmetry constraints were added, motivated by the fact

that, modulo a phase difference, the movements of the left

and right parts of the robot are symmetrical. Hence, the

structure of the CPGs on the right side of the robot mirrors

that of the left side. For example, the connection weight

between the left hip and the left knee is equal in value to

the weight connecting the right hip to the right knee. In

the network the hip CPG on a given side responsible for

rotation in the sagittal plane, can be connected to all the

other ipsilateral2 joint CPGs, the corresponding contralateral

hip CPG, and the waist CPGs as well. Note, however, that

this hip joint CPG can only receive connections from the

corresponding contralateral hip joint CPG. Thus, the total

number of connections to be determined sums up to 32, see

also Fig. 3 for the details of inter-CPG connectivity.

For reasons that will be discussed in Sect. IV, the internal

parameters of the individual two-neuron CPGs were set to

fixed values, generating a frequency approximating that of a

normal walking pattern. The CPG parameters were set to the

following values for all CPGs, except for the knee joint CPGs

and the waist joint (rotation in the sagittal plane) CPG: τu =
0.025, τv = 0.3, β = 2.5, u0 = 1.0, w12 = w21 = −2.0. In

analogy with human gait, the knee joint CPGs and the waist

joint CPG oscillate with double frequency, compared to the

other CPGs. Thus, for these joints’ CPGs the τu,v values

were set to half of the value for the other CPGs.

C. Genetic algorithm

A GA has been used for optimizing the structure of the

CPG network controlling the movements of the robot. The

total number of evolvable connections equals 32. In the

2The term ipsilateral refers to the same side of the body, and is thus the
opposite of contralateral.



Fig. 3. Left panel: The structure of the CPG network used in the simulations. The connections are represented, in a slightly simplified way, by the arrows
in the figure. Note that an arrow indicates the possibility of full connection, as shown in the rightmost part of the panel. Right panel: The robot depicted
with a single hip joint CPG with feedback paths, and a possible choice of connection types. In the situation shown in the figure, the flexor neuron is
responsible for rotating the hip joint in the counterclockwise direction.

GA, two chromosomes were used for the CPG network:

one binary-valued chromosome determining the presence or

absence of each of the 32 connections, and one real-valued

chromosome determining the parameter values for those

connections which are actually used in a given individual.

Along with the CPG network structure, the feedback network

can also be evolved using a third (real-valued) chromosome,

which includes 20 parameters determining the sign and the

strength of the different feedback paths (see below).

The fitness measure was normally taken as the distance

walked by the robot in the initial forward direction, decreased

by the sideways deviation. Some attempts were made to

use a multi-objective GA (MOGA), with three populations

evolving simultaneously towards different fitness measures,

namely (1) the distance walked, (2) the number of times an

entire foot touched the ground, and (3) the sum of the shortest

distance (of the two legs) in the vertical direction between

the hips and the knees over all time steps. Criterion (2) was

included in order to suppress running behavior where the

feet hardly touched the ground, which affected the frontal

plane balance. The last criterion should promote an upright

posture. However, the MOGA did not lead to any significant

improvement. Hence, a standard GA was eventually chosen

for the simulation experiments.

For selection, a tournament scheme of size 8 was adopted.

The individuals are randomly picked from the population to

compete against each other, based on the fitness values. The

individual with highest fitness value is then selected with

a probability equal to 0.75. After selection, the mutation

operator is applied, randomly changing a gene’s value with

the probability 10/N , with N being the total number of

genes of the individual.

D. Feedback

In order to guide the evolutionary process towards an

upright and stable bipedal gait, feedback was introduced

measuring the waist angle, thigh angle, and lower leg angle,

all relative to the vertical axis. Also, a touch sensor in each

foot was introduced in the simulation. This sensor is used

both to produce a feedback signal and to enable, or prohibit,

feedback to a certain joint CPG during a specific phase, e.g.

the stance phase. The feedback was incorporated into the

CPGs by adding an extra term to (1), which then becomes

τuu̇i = −ui − βvi +

n∑

j=1

wijyj + u0 + f (4)

where f is the feedback. In this setup, the feedback structure

is decided upon beforehand. However, the actual type of

the connection (inhibitory or excitatory) and the strength

of the feedback are determined by the GA. An example

of the feedback paths connected to the hip joint (and a

possible choice of connection type) is shown in the right

panel of Fig. 3. In detail, the feedback paths are given by

the following equations:

waist1 = c1w1f,e
θw + pr[w1f,e

(c2θr,u + θr,l)]

+pl[w1f,e
(c2θl,u + θl,r)] (5)

waist2 = w2f,e
θl,u − w2f,e

θr,u (6)

hip1,l = w3f,e
θl,u − w3f,e

θr,u + c3w3f,e
er (7)

hip2,l = el[w4f,e
θl,u] (8)

hip3,l = w5f,e
θhip3,l

(9)

kneel = er[w6f,e
θr,l] (10)

anklel = el[w7f,e
θl,u] (11)

footl = el[w8f,e
θl,l] + er[c4w8f,e

θr,l] (12)

hip1,r = w3f,e
θr,u − w3f,e

θl,u + c3w3f,e
el (13)

hip2,r = er[w4f,e
θr,u] (14)

hip3,r = w5f,e
θhip3,r

(15)

kneer = el[w6f,e
θl,l] (16)

ankler = er[w7f,e
θr,u] (17)

footr = er[w8f,e
θr,l] + el[c4w8f,e

θl,l] (18)

where waist1 is the joint rotating the torso in the sagittal

plane, and waist2 denotes the joint responsible for frontal

plane rotation. Likewise, hip1 rotates the leg in the sagittal

plane, while hip2 rotates the leg in the frontal plane. The hip3

joint is responsible for rotation around the vertical axis. The

strength and the sign of the feedback paths are determined by

the 16 weights wif,e
, along with the four additional constants

ci.



Since each joint CPG consists of two units, a flexor neuron

and an extensor neuron, two different connection weights are

used, wif
and wie

, respectively, as indicated in the equations.

Apart from this, the feedback paths for the two CPG neurons

are identical. Hence, the total number of parameters to be

determined sums up to 20.

Furthermore, θw is the torso angle in the sagittal plane, θl,u

is the left upper leg (thigh) angle, and θl,l is the left lower

leg angle. Correspondingly, the angles for the right leg are

denoted with θr,u and θr,l. The angle of the hip3 joint in

the local frame is denoted θhip3,i
, where i is either r (right)

or l (left). Finally, ei and pi stand for enable and prohibit

respectively. If the corresponding foot is on the ground, ei is

equal to one, and zero otherwise. If the corresponding foot

is not in contact with the ground, pi equals one, and zero

otherwise.

IV. SIMULATIONS

In this section, simulation experiments of three different

methods, all involving posture-support structures, will be

discussed.

In order to guide the evolution towards human-like gait,

and at the same time avoid the problems related to complex

fitness functions (see Sect. I), simplest fitness measure, i.e.

the distance covered, has been used here, in combination with

a mass-less posture-support structure, as shown in the right

panels of Fig. 2. Given a supporting structure, the robot is

forced to an upright position, and only individuals capable of

producing repetitive leg motion will gain high fitness. When

the support is used, such individuals will appear early in

the evolution. However, a drawback with this method is that

when the repetitive leg motion is discovered, individuals will

start to exploit the support mechanism in many different

ways. One common result is that individuals tend to take

unnaturally large steps. While this gives high fitness when

the support is used, it will certainly have a negative effect on

the frontal plane balance once the support is removed. Thus,

in an attempt to avoid this motion pattern, a choice was made

not to evolve the internal parameters of the individual two-

neuron CPGs, shown in Fig. 1, simply because the evolution

would strive towards lower frequencies. Also, in order to

prevent crawling behaviors, each individual run is aborted

as soon as the hips of a robot collide with the ground.

Information concerning the simulations is given in Table I.

In the following subsections the simulation experiments will

be described in more detail.

A. Method 1: Four-point support

The first experiments were made using a posture support

with four contact points, as shown in the right panel of Fig. 2.

The four-point support was attached to the robot in such a

way that there was a predetermined distance d between the

contact points of the support and the ground. Different values

of d were examined, as shown in the 1st, 2nd, and 3rd rows

of Table I. Feedback was not used here, and the hip2, hip3

and ankle joints were locked. However, no successful gait

patterns were obtained in this way. The individuals simply

exploited the support too much, leading to unnatural gait

patterns of different kinds, also briefly described in the table.

For example, the 0.2, 2 support configuration (3rd row) led

to an individual performing a running gait, which one might

expect to be useful, but that individual over-exploited the

support to such an extent that it could not maintain its balance

at all without the support. In Fig. 4, some of the resulting

motions are depicted.

In order to meet the intended goal, i.e. evolving a human-

like gait for the robot, two modified strategies were also tried.

In the first strategy the support was gradually removed, in

the sense that d increased during evolution, as better fitness

values were obtained. The assumption here was that this

should eventually lead to an individual that was completely

independent from the support. However, this approach did

not improve the outcome, compared with the previous results.

In the second strategy, the support was not gradually

removed during evolution, but instead individuals were pun-

ished for using it. The fitness measure was simply decreased

by a factor, properly normalized, measuring the number of

ground contacts with the support. However, this approach

did not yield any improvements either.

In the case of four-point support no useful results were

obtained; the individuals simply exploited the support too

much, resulting in unnatural gait patterns. For example, when

using the first modified strategy, gradually removing the

support, a slow unstable gait pattern, which almost resembles

a drunkard’s walk, emerged. When using the second modified

strategy, with punishment for support usage, the result was

an individual using a hop gait for locomotion.

B. Method 2: Two-point support in 2D, then 3D

Since no acceptable results were found with the four-point

support, the support structure was changed to one having

only a single contact point on each side of the robot, as seen

in the rightmost panel of Fig. 2. Rather than evolving 3D

balance at once, as in the previous case, the idea now was

to divide the problem into two phases; first evolving gait in

2D, and second, to generalize it to a full 3D gait.

In this procedure, a CPG network capable of producing

a stable upright gait in the sagittal plane should first be

evolved using the two-point support, with the hip2, hip3

and ankle joints locked at this stage. Second, when a stable

individual has been obtained, it should be cloned creating a

new population consisting of copies of this individual. At this

stage, the support should be removed and the GA should find

a way to balance the robot in the frontal plane as well. Before

Fig. 4. The left panel shows the simulated robot taking unnaturally large
steps. The right panel shows the robot exploiting the four-point support.
Note that the supporting structure is not shown in the pictures.



the evolution starts, the hip2 and ankle joints should be

unlocked and the corresponding genes, including the genes

encoding the waist joint parameters, should be randomly

initiated for each individual in the population. Since the

remaining genes (which are identical for all individuals)

ensure sagittal plane balance they should not be changed

in the second step.

1) Phase 1: Evolving balance in the sagittal plane:

During this first phase the hip2, hip3 and ankle joints were

locked. Balance in the frontal plane was evolved using a two-

point support, with contact points placed 2 m from the robot

and 0.25 m above the ground. This configuration was chosen

since it ensures low sideways leaning angle and at the same

time allows the robot to bend its knees without the support

touching the ground. Furthermore, if a robot’s hips collide

with the ground, the evaluation of that particular individual

is terminated.

In order to balance in the sagittal plane the evolutionary

procedure started misusing the torso as a third leg, achieving

speeds up to 0.3 m/s. This problem was solved by simply

removing the contact point in the torso which is used to

detect the collision with the ground. Once the torso could not

be used for support, evolution found the large step motion,

as described earlier, ensuring balance in the sagittal plane

with a speed of approximately 0.45 m/s, see the 4th and 5th

rows of Table I.

In order to reduce the step length, hand-tuned feedback

paths were introduced measuring torso, upper leg, and lover

leg angles, as described in Sect. III. Adding feedback, sig-

nificant reduction in evolution time was observed. The same

fitness value as before could now be reached approximately

5 times faster. However, the individuals were still taking

unnaturally large steps.

Success in obtaining an upright human-like gait, with

normal step size, was achieved using the following rule:

during the evaluation of each individual, if the robot’s hip

fell below a certain value, the support was removed until the

end of that run. If the step length is large and the support is

removed in this way, the robot will most likely be unable to

maintain the frontal plane balance. Thus, it will fall to the

ground ending the run. Forced by this rule, evolution was

able to find individuals moving at a speed of 1.13 m/s, see

Table I, 6th row. However, even after 400 generations, these

individuals could not walk more than 10 to 15 meters before

falling to the ground. In order to improve the performance,

the GA was allowed to evolve the feedback paths as well.

As a result, a stable individual, i.e. one that did not fall even

after the end of the nominal evaluation time, was obtained

within 50 generations, walking at a speed of 0.4 m/s, see

Table I, 7th row. To ensure stability, the whole foot sole was

on the ground during almost the entire stance phase, resulting

in a perfect condition for full 3D balance.

2) Phase 2: Evolving balance in full 3D: Once a satisfac-

tory stable individual had been obtained using the support,

evolution in the full 3D environment could begin. In the

initial population at this stage, all individuals were mutated

copies of the best individual from the previous step, as

TABLE I

PARAMETERS AND RESULTS OF THE SIMULATION RUNS

In the column labeled support, the numbers i, j denote the initial placement
of the contact points in a given run, where i is the height above the ground
[m], and j is the horizontal distance from the hip [m]. Evaluation time
is denoted by t [s], and the f column indicates whether or not feedback
was used. F [m] is the obtained fitness, v is the average locomotion speed
[m/s] of the robot during the evaluation period, and the last column gives
a short description of the resulting gait. Note: † denotes phase 1, and ‡

denotes phase 2.

Support t f F v Gait

4-point, 0.1, 1 7 No 3.85 0.55 hop gait

4-point, 0.3, 2 7 No 4.60 0.66 large steps

4-point, 0.2, 2 7 No 6.55 0.93 running

2-point, 0.25, 2 † 7 No 2.10 0.30 tripod gait

2-point, 0.25, 2 † 7 No 3.15 0.45 large steps

2-point, 0.25, 2 † 7 Yes 7.91 1.13 running

2-point, 0.25, 2 † 20 Yes 8.00 0.38 slow, stable

no support ‡ 40 Yes 18.26 0.46 slow, stable

1 sec. 0.25, 2 † 40 Yes 19.54 0.56 slow, stable

1 sec. 0.25, 2 ‡ 40 Yes 23.09 0.58 slow, stable

1 sec. 0.25, 2 40 Yes 35.56 0.90 fast walk

described above. The GA should now only consider the hip2,

ankle, and waist joints, as well as their feedback paths. The

fitness measure was still taken as the distance covered in the

initial forward direction, decreased by the sideways distance.

Within 150 generations, the best individual was able to

maintain balanced walking for up to 60 seconds. After an

additional 100 generations, the best individual was generally

able to maintain balance indefinitely, see Fig. 5 and Table I,

8th row. Since the robot was unaware of its direction of

motion and because of the fact that the hip3 joints were

locked, the smallest perturbation would set it out of course,

resulting in a lower fitness value.

Given the best individual from phase 2, it was possible

to continue evolving the parameters for the hip3 joint. The

feedback for the hip3 joint is defined as described in Sect. III.

Evolution found a solution (not shown in the table) that

resembles a PD controller, striving towards keeping the feet

facing forward. A similar gait as before, with the hip3 joint

locked, emerged.

C. Method 3: 2D one second support, then 3D

The reason for introducing the two-point posture-support

structure in Method 2 was mainly that it is much harder

to maintain balance in the frontal plane than in the sagittal

plane. By using the supporting structure, the problem was

separated into two stages of evolution; first, generating a

stable gait in 2D, and second, generalizing the 2D gait to

three dimensions. The assumption here was that this way of

splitting up the problem should make it easier for evolution

to find a good solution to the overall problem of generating a

robust 3D gait. However, since the hip2 and ankle joints were

locked during the 2D stage the balance in the frontal plane is

then only ensured by the torso. As a consequence, evolution

most often creates individuals that solve the problem in an

unnatural way, i.e. individuals that exploited the supporting

structure too much. Such individuals are usually not suitable

for further evolution in 3D. Another drawback of Method 2



Fig. 5. The best evolved stable gait pattern in the full 3D environment. The details of the corresponding individual are shown on the 10
th row of Table I.

is that there is no obvious way of deciding at what point to

interrupt the 2D evolution stage, and thus to enter the 3D

phase: This simply has to be judged by the experimenter

in an ad hoc manner. Hence, there is no guarantee that the

individuals evolved in 2D will perform well in the 3D stage.

Therefore, a third method was investigated as well. The

same two-point supporting structure as described in the 2D

case in the previous method, was used. The difference here,

as compared to the other method, is that under the first stage

in 2D the individuals were evaluated in a procedure where

the supporting structure was present only during the first

second of the evaluation, and was then completely removed.

This arrangement is motivated by the fact that it is during

the start sequence, before entering the gait cycle, that the

individuals are most vulnerable, in terms of frontal plane

balance. Here, the hip2, hip3 and ankle joints were still

locked. However, after some generations most individuals in

the population should be able to walk without the supporting

structure present, except during the initial second. This has

been confirmed to work well in simulation experiments. The

goal in this stage is to obtain a large portion of individuals

that can walk in cautious manner, which is essential for

individuals to be able to generalize to 3D. In the next stage,

evaluations were performed in full 3D. That is, the evaluation

procedure was performed in the same way as described

above, but all joints except the hip3 joints were unlocked.

The 9th row of Table I shows the results from evolution in

2D (joints locked and 1 second support), and the 10th row

of the table shows the results from phase 2 (evolution based

on the best individual from the previous run, with hip2 and

ankle joints unlocked). A visualization of the gait for the

best individual, corresponing to the 10th row in the table, is

shown in Fig. 5.

Moreover, the results from a run with hip2 and ankle joints

unlocked, performed in a single step, i.e. without the two-

phase procedure described above, is shown in the last row.

The gait obtained in this last run was fast, but appeared to

be rather unstable.

V. DISCUSSION AND CONCLUSIONS

The outcome of the examinations and experiments de-

scribed in this paper indeed fulfilled the intended goal, i.e.

to generate robust bipedal gaits for a simulated robot by

means of structural evolution of CPG networks: Two of the

three methods introduced in this paper solved the problem

of generating gaits for the simulated bipedal robot in 2D

and 3D environments. However, Method 2 was affected by

some drawbacks, compared to the third method. Firstly,

since the support structure is present the whole time during

phase 1 (evolution in 2D), evolution might very well find

solutions that receive high fitness score in 2D, but are less

successful in generalizing to 3D. Examples of such solutions

are individuals that walk with too long foot steps, giving high

fitness in 2D because of their ability to cover large walking

distances in short time. However, this kind of walking

behavior seriously affects the frontal plane balance in 3D.

Thus, evolution in 2D has to be aborted at an appropriate

time, before this kind of behavior emerges which, in turn,

requires that the evolutionary process is monitored more or

less continuously in order to determine when it should be

interrupted.

Secondly, while it is possible (at least in principle) to

monitor the progress and stop the evolution when sufficient

locomotion speed is achieved, it is not always the case that

evolution chooses a path, i.e. relatively small steps with a

high speed, that is suitable for further evolution in 3D. Often

the large step motion behavior emerges before any stable,

small-step gait pattern is obtained.

In the case of the third method the two problems described

above are not present: Evolution is biased towards generating

gaits capable of handling the 3D environment from the

beginning. Thus, Method 3 seems to be the most promising

candidate for future investigations.

The need for the support structure during the initial

second, as described in the second method, indicates that the

CPG network cannot fully handle the start-up of the walking

cycle in an appropriate way. Thus, one should, in future

work, consider a dedicated controller, either a CPG-based

controller or some other type of controller, for the start-up

sequence of the walking cycle. It should then be tuned to

enter the walking cycle and hand over to a CPG network in

a more smooth way. Then, ultimately, it would be possible

to skip totally the support structure.

In this paper only straight-line walking has been consid-

ered, i.e. no turning motions were involved. However, one

could include such motions using the hip3 joint in order to

change deliberately the direction of walking, preferably by

using vision for feedback.



Another topic for future work would be to investigate

whether one could evolve the over-all feedback network,

without having to pre-specify certain feedback paths, as is

currently done. However, such an approach would prob-

ably increase the evaluation time considerably, since the

likelihood of finding a set of feedback paths in an early

generation that generates any gait at all would most probably

be very small. On the other hand, evolving the feedback

network could lead to better overall performance, compared

to specifying the paths ad hoc.
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