
Stochastic optimization methods (FFR 105), 2008
Solutions to the exam (2008-10-22)

1. (a) i. Elitism is the process of transferring an unchanged copy of the best indi-
vidual in the current generation, to the next generation. This is done, for
example, by keeping track (during evaluation) of the index (in the popula-
tion) of the best individual. Then, when making the new generation, one
may start by inserting a copy of the best individual (it can also be inserted
at the end of the procedure that generates the new individual). See also
p. 55 in the course book.

ii. In fitness ranking, one reassigns fitness values starting from the raw fitness
values obtained during evaluation of individuals. The standard way to
carry out ranking is to set new (ranked) fitness values as

F rank
i = (N + 1−R(i)), (1)

where F rank
i is the new fitness value of individual i, N is the population

size, and R(i) is the ranking of individual i. The ranking is defined such
that the best individual gets ranking R(i) = 1, the second best ranking
R(i) = 2 etc. See also p. 51 in the course book.

iii. Creep mutations are used in connection with real-number encoding. These
mutations generally change the value (allele) of a gene by a smaller amount
than the ordinary full-range mutations. In creep mutation, the new value
of a gene is obtained based on a distribution centered on the old value,
and with a range that is typically smaller than the (entire) allowed range
of the gene. Thus

g ← Ψ(g), (2)

where g denotes the value of g, and Ψ the distribution. A common special
case is to use a uniform distribution, in which case the mapping takes the
form

g ← g − Cr/2 + Crr, (3)

where Cr is the creep rate and r is a uniform random number in [0, 1]. In
case the new value ends up outside the allowed range, it is modified to the
nearest limit.

(b) i. Using roulette-wheel selection, the probability of selecting individual 4 can
be written as

p4 =
F4

F1 + F2 + F3 + F4 + F5

=
16

55
≈ 0.291. (4)

ii. In the case of tournament selection with tournament size 2, there are
5 × 5 = 25 possible tournaments, since the individuals are chosen (for
the tournament) with replacement. Thus the possible pairs of individuals
are (1, 1), (1, 2), . . . (5, 5). Of these 25 pairs (which occur with equal proba-
bility, namely 1/25), 9 involve individual 4: (1,4), (2,4), (3,4), (4,4), (4,5),
(4,1), (4,2), (4,3), (5,4). For six of the pairs individual 4 is the better indi-
vidual (and is thus selected with probability ptour) whereas for two of the



pairs ((4,5) and (5,4)) the other individual is better, so that individual 4 is
selected only with probability 1− ptour. For the pair (4,4), individual 4 is
obviously selected with probability 1. Thus, summarizing, the probability
of selecting individual 4 equals

1

25
(6ptour + 2(1− ptour) + 1) = 0.24. (5)

(c) The proof can be found on p. 173 of the course book.

(d) Convexity of functions can be studied using the Hessian matrix. More specifi-
cally, a function f(x1, x2) is convex if the Hessian

H =


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is positive definite, i.e. has positive eigenvalues. In this particular case, the
Hessian becomes

H =

(

8 -3
-3 4

)

. (7)

The eigenvalues are obtained from the equation

(8− λ)(4− λ)− 3× 3 = 0. (8)

Solving this equation, one obtains

λ1,2 = 6±
√

13 > 0. (9)

Thus, the function is convex.

(e) In PSO, the tradeoff between exploration and exploitation is handled using the
inertia weight w. The velocities change according to

vij ← wvij + c1q





xpb
ij − xij

∆t



+ c2r

(

xsb
j − xij

∆t

)

, j = 1, . . . , n, (10)

where xij denotes position component j of particle i, vij denotes velocity com-

ponent j of particle i, c1 and c2 are constants, xpb
ij are the components of the

best position found by particle i and xsb
j are the components of the best po-

sition found by any particle in the swarm. If w > 1, the search puts more
emphasis on exploration, since the cognitive and social components (the terms
involving c1 and c2) then play a less significant role than if w < 1, in which
case the PSO algorithm tries to exploit the results already found, as encoded
in the cognitive and social components. Initially, w is typically set to a value
larger than 1 (1.4, say), and is then lowered down to a limit of around 0.3-
0.4. A common procedure for reducing w is through multiplication by a factor
β ∈]0, 1] (often very close to 1).

2. Local minima are found at stationary points, i.e. at points where the gradient of f
is equal to the zero vector. For this particular function, the requirement that the
gradient should vanish yields the two equations

∂f

∂x1

= 4x1 − 4 = 0 (11)



∂f

∂x2

= 2x2 + 2 = 0 (12)

with the solution P1 = (1,−1)T. The boundary 2x2
1+x2

2 = 12 remains to be checked.
This can be done using, for example, the method of Lagrange multipliers. However,
even easier is to note that S is a convex set, and that f(x1, x2) is a convex function
(the eigenvalues of the Hessian are 4 and 2, i.e. both are positive), so that any local
minimum must also be a global minimum. Thus, the minimum value of f over S is
equal to f(1,-1) = -3.

3. (a) A detailed description of AS can be found on pp. 105-107 in the course book.
For full points, the description should contain all the steps (1-4), as well as clear
explanations of (1) pheromone initialization, (2) probabilistic path generation,
(3) and the rules for updating pheromones.

(b) The main differences between MMAS and AS are that

• In MMAS, only the ant generating the best solution is allowed to deposit
pheromone. The definition of the best solution is typically changes during
a run, so that one uses best so far for some iterations, then best in current

iteration for some iterations etc.

• In MMAS, one introduces limits on the pheromone levels. Thus, if the
pheromone level τij on a given edge eij falls below τmin, it is set to τmin.
Similarly, if the pheromone level τij exceeds τmax, it is set to τmax.

• In MMAS, pheromones are initialized to the maximum level, i.e. such that

τij = τmax ∀(i, j) ∈ {1, n}. (13)

τmax is set as 1/(ρDb), where ρ is the evaporation rate and Db is the length
of the current best tour.

(c) The proof is given on p. 183 in the course book.

4. (a) The probability of not mutating any of the 1s equals (1 − pmut)
m−l (since

mutations are independent of each other), and the probability of mutating
at least one of the 0s equals 1 − (1 − pmut)

l. Thus, the probability for the
combination of these two events (which can be taken as an approximation of
the probability of an improvement as stated in the problem formulation) equals

P (l, pmut) = (1− pmut)
m−l(1− (1− pmut)

l). (14)

(b) The proof can be found on pp. 181-182 in the course book.
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