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Abstract

The development of anthropomorphic bipedal loco-
motion is addressed by means of artificial evolution
using linear genetic programming. The proposed
method is investigated through full rigid-body dy-
namics simulation of a bipedal robot with 26 de-
grees of freedom. Stable bipedal gait with a veloc-
ity of 0.054 m/s is realized. Locomotion controllers
are evolved from first principles, i.e. the evolved
controller does neither have any a priori knowledge
on how to walk, nor does it have any information
about the kinematics structure of the robot. In-
stead, locomotion control is achieved based on in-
tensive use of sensor information. Also, the energy
consumption of the robot is monitored during sim-
ulation, in order to yield a pressure on evolution to
favor energy efficient gaits. In this linear genetic
programming approach, randomly generated indi-
viduals undergo structural evolution. This is, to
our knowledge, the first example of entirely model
free evolution of bipedal gaits for a system with
high number of degrees of freedom.

1 Introduction and motiva-

tion

There are numerous application areas for robots
with anthropomorphic shape and motion capabili-
ties. In a world where man is the standard for al-
most all interactions, such robots have a very large
potential acting in environments created for people.
They can function in certain areas which are not
accessible for wheeled robots, such as stairways or
natural terrain, for instance. Furthermore, robots

capable of bipedal locomotion have the ability to in-
teract with the environment using the whole body,
and climb over large obstacles in its path.

From a control theory point of view however,
bipedal walking robots are more difficult to deal
with than wheeled robots. Wheeled robots are de-
signed to maintain their wheels in contact with the
ground at all times. Thus, stability is usually not
an issue, except when the robot is on a steep slope.
Legged robots, on the contrary, lift their feet off
the ground to walk. Thus, the motion of walking
dynamically changes the stability of the robot.

In bipedal walking a complete cycle is divided
into two phases; the single support phase and the
double support phase, taking place in sequence.
During the single support phase one foot is in con-
tact with the ground and the other foot is in swing
motion, being transferred from back to front posi-
tion. The so called support polygon is formed by
the robot’s stance foot in the single-support phase,
and by the robot’s feet in the double support phase.
Further, bipedal locomotion is commonly divided
into two main classes; static gaits, and dynamic
gaits. The most fundamental issue of bipedal lo-
comotion, apart from the realization of the relative
motions of the mechanism’s links, is how to pre-
serve the walking balance in the system [41]. That
question has long been the main topic of many sci-
entific studies, and some of the more influential re-
sults will be briefly discussed in this section.

In the research literature on topics related
to bipedal walking, the terms stability, equilib-
rium, and balance are often used interchangeably.
Throughout this paper, we will use the following
notions in order to avoid confusion; the term sta-
bility refers to a system which could be analytically
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treated as stationary (i.e. the static case), whereas
for a non-stationary system (the dynamic case), the
terms balance and equilibrium are used.

By definition, in static walking the robot is re-
stricted to move in such a way that, in order
to avoid tipping over, the vertical projection of
the centre-of-mass (PCOM) of the robot remains
within the convex envelope of the support polygon
at all times. Further, it is assumed that the robot’s
motions are so slow that dynamical effects, which
could arise due to the amount of torque that is ap-
plied to the robot over time, could be neglected.
Thus, the system’s stability depends solely on the
PCOM, as described above [24]. Such a gait is also
referred to as a statically stable gait [16]. However,
the resulting gait is usually too slow for practical
use in real bipedal robots [8].

A dynamic gait is any gait that is not statically
stable at all times [36]. In dynamic walking, in fact,
the above described PCOM condition has very little
to do with the equilibrium of the bipedal system;
the PCOM is allowed outside the support polygon.
Instead, dynamical effects which arise due to the
link’s velocities and accelerations are heavily in-
volved for maintaining the walking balance [24].
Walking with dynamic balance provide higher lo-
comotion speed and greater efficiency than walking
with statically stable gaits, but the control problem
of dynamic walking is harder [24].

Within the domain of dynamic walking, the idea
of the centre-of-mass projection has got its gener-
alized equivalents, such as the zero-moment point
(ZMP) [43, 42, 39, 41, 40], and the foot rotation in-
dicator (FRI) point [16], in order to deal with the
walking balance problem.

The ZMP concept was introduced by Vukobra-
tovic et al. around 1969 [43, 42], but the term
ZMP was formally introduced a couple of years
later [44, 39]. During the single-support phase only
one foot is in contact with the ground, while the
other is in swing motion. In order to then maintain
dynamic equilibrium of the bipedal mechanism, the
ground reaction force (GRF) should act at the ap-
propriate point on the foot sole (of the stance foot)
to balance all forces acting on the system during
the motion. It should be clear that the boundary
condition for dynamic equilibrium states that the
torques acting around the horizontal axes (x and
y), at the point where GRF is acting, will always
be equal to zero. There may exist a torque around

the vertical axis, but it is a realistic assumption
that it is balanced by frictional forces (given that
the friction coefficient is high enough), and it will
not cause foot motion. Thus, the ZMP is defined
as the contact point between the ground and the
foot sole of the supporting leg where the torques
around the horizontal axes, generated by all forces
acting on the robot, are equal to zero. Any change
in the walking dynamics will cause a simultaneous
change of the GRF vector, altering its magnitude,
direction, and acting point ZMP. During a dynami-
cally balanced gait, the ZMP can move only within
the supporting area. In the double-support phase,
the positions of both feet are fixed relative to the
ground, but also in this situation the ZMP should
remain within the convex envelope of the support
polygon. This is the fundamental meaning of the
ZMP concept [41].

The ZMP concept has been involved in numer-
ous practical applications of anthropomorphic loco-
motion mechanisms. The first one was the realiza-
tion of a dynamically balanced bipedal gait in 1984,
with the WL-10RD robot at the Waseda University
in Tokyo [37].

An extension to the ZMP conception, named the
FRI point, has been suggested lately [16]. In the
case of a dynamically balanced gait, the FRI point
may exit the physical boundary of the support area,
which the ZMP never does. However, researchers
in the field still disagree about the notions and in-
terpretations of the ZMP and the FRI point. Gen-
erally accepted definitions of, and means of treating
dynamic equilibrium in bipedal walking still remain
elusive [16, 41, 24, 17, 40, 1]. Moreover, Goswami
[17] have recently introduced an additional con-
cept, the zero rate of change of angular momen-
tum (ZRAM), in order to deal with balance main-
tenance in dynamic gaits. However, it is beyond
the scope of this paper to further examine which
one is the most adequate concept.

Conventionally, there are two main approaches to
bipedal gait synthesis; off-line trajectory generation
and on-line motion planning [45, 24]. The first ap-
proach, the off-line method, assume that there ex-
ists an adequate dynamic model of the robot and its
environment, for the generation of periodic walking
pattern [26, 21, 20, 18, 48, 37]. In order to keep the
ZMP within the stable region, as described above, a
desired ZMP reference trajectory is generated. The
reference trajectory can for instance be generated
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using spline functions [2]. Then, a body motion
that adheres to the desired ZMP trajectory is de-
rived, using knowledge about the inverse kinemat-
ics relationships and the system’s dynamics. Only
if the ZMP stays within the stable region, the gen-
erated gait can be implemented on the actual robot.

The second approach uses limited knowledge
about the kinematics and dynamics of the robot
and its environment. In on-line controller design,
this is referred to as finding the plant model and
transfer function of the system one wishes to con-
trol. A plant model describes the static relationship
between input and output, and a transfer function
includes dynamic effects as well. Given the trans-
fer function, appropriate torques can then be gen-
erated by means of e.g. a PID regulator. This
type of control scheme relies much on the feedback.
Control methods for bipedal walking based on the
dynamical equations of motion [15, 13] have been
proposed. In order to decrease the demand for com-
putational resources in real-time implementations,
simplified models, such as the inverted pendulum
model [23, 30], and a static motion strategy [49],
have been proposed. With on-line methods higher
walking robustness is achieved at the cost of an in-
crease in demand for computational resources, com-
pared with off-line methods.

Control policies based on classical control theory,
like the ones outlined above, have been successfully
utilized for bipedal locomotion in various imple-
mentations. However, the success of these methods
relies on the calculation of reference trajectories for
the robot to follow. That is, trajectories of joint an-
gle, joint torque, or the centre-of-mass of the robot
are calculated so as to satisfy constraints, such as
the ZMP criterion [18, 2, 48, 13, 30, 12]. When the
bipedal agent, either it is a real physical robot or
a simulated equivalent, is acting in a well-known
environment the abovementioned control methods
should work well. However, the drawback of using
such a method when acting in a realistic, dynam-
ically changing environment is that reference tra-
jectories can rarely be specified there. A bipedal
robot will encounter unexpected situations in the
real world, which cannot all be accounted for on
beforehand. Therefore, alternative biologically in-
spired computational methods have been consid-
ered when generating gaits and other behaviors for
bipedal robots. Such methods do not, in general,
require any reference trajectory.

Some researchers have employed a connection-
ist approach, i.e. artificial neural network (ANN)
based strategies, for control of bipedal walking.
Katic and Vukobratovic have reviewed such meth-
ods in a recent paper [24]. Others, including the
authors of this paper, advocate the use of evolu-
tionary algorithms (EAs) for bipedal gait synthesis,
e.g. [2, 8, 31, 7].

Although many works have been published on
natural bipedal gait generation by means of using
EAs, and in particular genetic algorithms (GAs),
most of them concerned on a simplified simula-
tion model of the biped, i.e. the 5-link model de-
veloped by Furusho and Masubuchi [14]. Such a
simplified model might be useful for illustrating a
gait generation method, but it has a severe limita-
tion; only motion in the sagittal plane is considered.
Of course, the impact of the proposed technique
would have a greater impact if demonstrated in a
3-dimensional rigid-body simulation instead. There
exist, however, some examples in the research liter-
ature of synthesizing locomotion for full rigid-body
simulated bipeds, by incorporating EAs.

Pettersson [31] have reported on the develop-
ment of a method for generating walking behaviors
for bipedal robots. An adaptation of evolutionary
programming (EP) to the case of finite state ma-
chines (FSMs) is used to operate both on the struc-
ture and on the parameters of the robotic brain.
The method has been demonstrated on a simpli-
fied five link robot, constrained to move in the
sagittal plane. Two test cases were used; energy
optimization and robust balancing. In the case of
energy optimization, a 134% improvement in walk-
ing length was obtained. In the case of robustness,
FSMs evolved that could withstand some pertur-
bations, which the initial FSMs could not. The au-
thors have also recently reported ongoing research
with evolution of RNNs, used as CPGs, for balanc-
ing behavior of a simulated bipedal robot [32].

An example of using a GA to optimize the op-
erational parameters of central pattern generators
(CPGs), which were used to generate a walking pat-
tern, was reported by Mojon [27]. Here, the model
for the CPGs was based on the equations of the har-
monic oscillator. A very realistic bipedal model was
used. It was a model of a real physical humanoid
robot, namely the QRIO1 robot, developed by the

1http://www.sony.net/SonyInfo/QRIO/top nf.html
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Sony Corp. Sony’s QRIO has 25 DOF, but the
simulated model had ”only” 21 DOF. The outcome
of these simulations was that the simulated robot
could walk in a straight line in a speed-equivalent
of 1.5 km/h. This should be compared with the
real QRIO robot that can walk in a speed of 2.5
km/h, on a flat surface. Also, the evolved gait did
not look very realistic at all.

Recently, a research team from Australia used a
standard GA with fitness proportionate selection
scheme to evolve the parameters of a limited spline
control system [4]. They managed to evolve a cyclic
walking pattern, which could generate a slow for-
wards walk.

Reil and Massey [35] and Reil and Husbands [34]
have used GAs to optimize fully recurrent neural
networks (RNNs), used to control biped walking.
They used a real-valued encoded GA to optimize
weights, time constants, and biases in fixed archi-
tecture RNNs. Regarding the network’s architec-
ture; the fixed number of neurons was 10, and node
1 through 6 was considered as motor neurons. Con-
nections between neurons could be removed, in the
sense that its corresponding weight was set equal
to zero. Their biped model has six DOF, and it
consists of a pair of articulated legs connected with
a link. Reil et al. reported results capable of biped
walking in a straight line on a planer surface, with-
out the use of proprioceptive input. Furthermore,
simple sensory input to locate a sound source was
integrated to achieve directional walking.

Ok et al. [29] have applied genetic programming
(GP) to induce parts of a ”nervous system” for a 3d
simulated bipedal robot. The neural system repre-
sents a rhythm generation mechanism with CPG,
consisting of neural oscillators, and a global feed-
back network. The authors have assumed that pa-
rameters and structures within single neural oscil-
lators are known and fixed, and focused on creation
of the feedback networks between the neural system
and the body dynamics system. They managed to
evolve a global feedback network which could gen-
erate bipedal gait, but only 4 steps of walking could
be achieved with the simulated biped.

Using a genetic programming (GP) approach,
Ziegler et al. [51] evolved gait controllers for a
full rigid-body simulated bipedal robot. Their GP-
system used linear genomes as representation. The
best control program that emerged was capable of

moving the biped forward by making fast, small
steps.

The idea to utilize EAs for generating gait con-
trollers for bipeds is not new, as shown by these ex-
amples. However, there exist only a few examples,
to our knowledge, where one goes beyond paramet-
ric optimization, and optimize also the structure of
the gait controller. Then, a more flexible scheme
than the GA binary representation is required, e.g.
GP [25].

While GAs usually operates on fixed-length bi-
nary strings, GP deals with the evolution of syn-
tactically correct computer programs. The ordi-
nary representation scheme in GP is called a tree
representation. A GP tree consists of functions
and terminals which, assembled into a structure,
can be executed as a computer program. A termi-
nal provides a value to the system, while functions
process values contained in the system. The tree
representation is a very flexible program structure.
The set of functions can be very rich; any program-
ming construct in any programming language may
be used. In GP, there is much freedom to choose
which functions to include. Further, the size of the
GP-trees are allowed to vary during evolution.

Another sometimes used representation in GP
is the linear representation, and consequently the
variant of GP using that representation is referred
to as linear genetic programming (LGP) [6]. LGP
evolves sequences of instructions of an imperative
programming language, e.g. C language or FOR-
TRAN. LGP is, compared with tree-based GP, rel-
atively easy to implement. Unlike tree-based GP,
LGP also facilitates the use of multiple program
outputs. This makes LGP ideally suited for the task
of evolving controller programs for bipedal walking.

In this work, LGP is utilized to generate locomo-
tion controllers from first principles for a simulated
bipedal robot with 26 degrees of freedom (DOFs).
It is noteworthy that in this robotic system there
is no model of the bipedal system, neither any a
priori knowledge on how to walk, available to the
evolved controllers. Randomly generated individu-
als, or controllers, undergo evolutionary processes
on the structural level. This is, to our knowledge,
the first example of an entirely model free evolu-
tion of bipedal locomotion for a system with a high
number of DOFs.

However, it should also be noted that learning
such a complex task as bipedal locomotion from
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scratch, starting with an empty brain and an al-
ready developed body, is far from trivial. For liv-
ing animals in the nature, including humans, the
body and the brain develop together. In this ap-
proach, the body of the bipedal does not undergo
any evolutionary process. Still, this project is an
attempt to generate a robust and anthropomorphic
(i.e. human-like) bipedal gait by means of artificial
evolution.

The rest of this paper is organized as follows: in
Section 2 the physical simulation environment and
the biped are described, together with the LGP sys-
tem. Then, the simulation setup is described in
Section 3. In Section 4 the results of the simula-
tions are described, and in Section 5 the results are
discussed. Finally, the paper ends with Section 6
Future work.

2 Method

In this section the methodology for the rigid-body
simulations and the evolutionary method used here
will be described. First, the physical simulation
environment and the biped model are described.
Second, the LGP system is explained.

2.1 Physical simulation

For simulating the articulated rigid-body dynamics
the Open Dynamics Engine2 (ODE) library is uti-
lized. In ODE the equations of motion are derived
from a Lagrange multiplier velocity-based model,
and a first order integrator is used. The actual im-
plementation of ODE puts emphasis on speed of
execution, rather than on accuracy. It is there-
fore mainly used for qualitative engineering tasks
involving rigid-body dynamics simulation.

2.1.1 Robot model

The biped model used here has no original equiva-
lent design in the real world, but it could be seen as
representing a generic bipedal robot model. It was
created from the body and joint primitives available
in the ODE simulation package. The robot model
consists of 22 rigid-body parts, and 18 ODE joints.
There are 8 universal joints, and 10 hinge joints

2http://ode.org/

Figure 1: The biped model used.

used to connect the rigid-body parts into an articu-
lated rigid-body structure (universal and hinge are
the internal names of specific joint types in ODE).
The rigid-body primitives used are 9 capped cylin-
ders and 13 rectangular boxes. The robot’s struc-
ture is defined using multiple chains, starting from
its feet with each link described in terms of the pre-
vious links. This composition results in a 26 DOF
bipedal model.

2.1.2 Sensor feedback

Sensors monitoring the internal state of the robot,
such as joint angles are referred to as proprioceptive
sensors. In this setting, the current joint angles of
the previous time step of the simulation are used
by the evolved controller to compute the next set
of motor signals for the robot.

Simulating a biped robot in a realistic environ-
ment most likely requires feedback loops between
the robot’s control system and the robot’s body,
as well as between the control system and the en-
vironment. The set of external sensors constitute
the robot’s ”window” to the environment. Those
sensors can measure quantities such as the robots
acceleration or inclination relative a fixed coordi-
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Figure 2: Schematic picture of the biped, showing
its kinematics structure. The model consists of 19
links (black) interconnected by 18 joints (yellow),
all in all resulting in 26 degrees of freedom.

nate frame, light intensity, external forces applied
to the robots body, and sound waves, to mention a
few examples.

A rigid body has six DOFs; three translational,
and three rotational DOFs. In robotics, accelerom-
eters are utilized to measure linear movement, and
gyroscopes are used to measure rotations. To fully
keep track of the movement of an object, tree
accelerometers and three gyroscopes is sufficient.
Mounted together, these form an inertial measure-
ment unit (IMU). In this set of simulations, the
robot was equipped with an artificial balancing
sense, in the form of a virtual IMU in its head,
and a three axis accelerometer in each foot. The
linear accelerations and angular rates are obtained
directly from the rigid body simulation in every
time step.

2.1.3 Controller Model

Joints can be powered in ODE. i.e., for each joint
in the bipedal model used here, there is a motor
associated with it. The ODE package supplies a

method, used in this investigation, to control the
joints by simply setting a desired speed of the motor
and a maximum force or torque that the motor will
use to achieve that speed. Thus, in order to make
the robot walk appropriate torque values need to
be applied to the joints in each time step of the
simulation.

In this implementation the speed and torque val-
ues have been pre-set, and the output of the evolved
controller just sets the rotational direction (+) or
(−) for each joint in the simulation. Appropriate
values for velocity and torque were determined em-
pirically. The generated controller takes as input
the relative positions of the joints, i.e. the joint
angles, additional sensor readings, and constants.

Appropriate motor signals are generated from
the raw output of the evolved individual by means
of a modified signum function ξ. These signals are
then sent to the robot for execution, see Fig. 3 for
more details. The modified signum function is de-
fined as follows:

ξ(x) =







−1 if x < κ
+1 if x > κ

0 otherwise
(1)

The value of the parameter κ was set to 0.12 in the
simulations. Furthermore, updated motor signals
are sent to the robot at a constant time interval,
covering a fixed number η of simulation time steps.
The reason for not letting the motor signals be up-
dated in each simulation time step was to avoid that
joints could change their rotational direction in ev-
ery time step, which would have resulted in rapid
oscillations of the joints. Such movements are not
desirable.

2.2 Linear genetic programming

The EA variant used here is referred to as lin-
ear genetic programming (LGP), and it follows
the paradigm of genetic programming of automatic
induction of syntactically correct computer pro-
grams. LGP evolves sequences of instructions of
an imperative programming language, e.g. C lan-
guage, FORTRAN, or machine code [28]. The
instructions of LGP are restricted to operations
(and conditional operations) that accept a min-
imum number of constants or memory variables,
called registers, and assign the result to a register
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Figure 3: Schematic depiction of the information flow through the robot control system. At the discrete
timestep t, the robot receives perceptual input Ω(t) through its sensor channels. The sensor signals Σt,
are then fed into the sensor registers (r55−r66). Simultaneously, the robot’s current joint angle positions
Θt are recorded in the I/O- and calculation registers (r0 − r25 and r26 − r51 respectively). There is one
register of each of these types associated with each degree of freedom. At the beginning of the GP run,
the constant registers (r52 − r54) were supplied with the values 0.001, 0.01, and 0.1 respectively. The
VRM then executes the GP-individual (program), which manipulates the contents of the calculation
registers. The I/O- sensor- and constant registers are read only during this stage. When the program
execution has terminated (i. e. evaluation steps off the end of the program), motor signal generation
(MSG) is initiated; a modified signum function ξ operates on the final contents Φt+η of the calculation
registers, and supplies the output Ψt+η to the I/O registers. These motor signals are then sent to the
robot, which then in timestep t + η execute these motor commands and accomplish some actions Γt+η.

again, e.g. r0 := r1 + 1. In this section, the LGP
concept will be explained in more detail.

2.2.1 Evolutionary algorithm basics

In The Origin of Species [10], it was argued that
all existing organisms are the descendants of a few
simple ancestors that arose on Earth in the dis-
tant past, and that the driving mechanism behind
this evolutionary development was natural selec-

tion. Over the past 35 years or so, the princi-
ple of natural selection has been successfully uti-
lized on computers to optimize a solution towards
a pre-defined goal, and from this evolutionary al-
gorithms (EA) have developed. Several research
subfields, such as evolutionary programming (EP)
[11], genetic algorithms (GA) [19], evolution strate-
gies (ES) [33], and genetic programming (GP) [25]
have emerged. Although they differ from each other
in many aspects they all mimic natural evolution in
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some ways. Based on very simple models of organic
evolution, EAs are applied to various problems such
as combinatorial optimization problems or learning
tasks.

The main ingredients common for all types of
EA are population of solution candidates, variation
operators, conservation operators, quality differen-
tials, and selection methods [3]. The first decision
that has to be made, however, when designing an
EA in order to solve a problem is how to define the
representation of a solution.

In GAs solution candidates are represented as
fixed-length strings of zeros and ones, and in ES
the individuals are represented as vectors of con-
tinuous variables. In EP, the representation scheme
consists of collections of finite state machines. In
GP there are three principal representation struc-
tures used, which are called tree, linear, and graph.
An assembly of solution candidates, or individuals,
are simply called a population.

The variation operator ensure that new aspects
of a problem are considered. In EAs this operator
is called mutation. It comes with three EA pa-
rameters determining its strength, its spread, and
its frequency of application. A very strong muta-
tion operator would basically generate a random
parameter at a given position within a solution. If
applied to all positions within a solution, it would
generate a solution completely uncorrelated with
its origin, and if applied with maximum frequency
within the entire population, it would erase all in-
formation generated in the population so far. Vari-
ation operators are means to increase the diversity
in the population of solution candidates.

The conservation operators are used to consoli-
date what has already been learned by various in-
dividuals in the population, i.e. conservation oper-
ators are means to decrease the diversity. Recom-
bination, or crossover of two or more solutions is
the primary tool for achieving this goal. Provided
the different parameters in a solution representa-
tion are sufficiently independent from each other,
combinations of useful pieces of information from
different individuals would result in better over-
all solutions. There are different ways to achieve
a mixing of solutions. The most frequently used
method involves two individuals recombining their
information, although multi-recombinant methods
are also used. Common recombination methods are
one-point, two-point, or n-point crossover for dis-

crete parameter values between two individuals, as
well as intermediate recombination for continuous
parameter values. A subset of the population can
also be copied without change to the next genera-
tion, i.e. reproduction.

An important property of an EA is to have some
quality differentials, i.e. a graded fitness function
that distinguishes a better solution candidate from
a good one, or a bad candidate from a really bad
one. If there was only a binary fitness function,
stating a solution by ”1” and no solution by ”0”,
then there would not be enough diversity among
individuals to drive the evolutionary search process.

Since the population is finite, not all the individ-
uals generated by the EA can be stored. Both the
solution candidates to be included in further evo-
lution and the ones to be replaced from the popu-
lation are selected on the basis of the quality dif-
ferentials. Following Darwin’s tradition, this pro-
cedure is called selection [3]. The most commonly
used selection method is fitness-proportional selec-
tion, which stems from the GA community. In GP
tournament selection is also widely used. A generic
evolutionary algorithm is summarized in Algorithm
2.1 below.

Algorithm 2.1 (Generic EA)

1. Randomly initialize a population of solution
candidates.

2. By using a certain selection method, select in-
dividuals that are fitter than others. The fit-
ness measure defines the problem that has to
be solved by the algorithm.

3. Generate new individuals by applying one or
more of the genetic operators reproduction, re-
combination, and mutation.

4. If the termination criterion is not met, go to
2.

5. Stop. The best solution found is represented
by the fittest individual.

¤

2.2.2 LGP fundamentals

When dealing with the actual implementation of
LGP, the concept of the so called virtual register
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machine (VRM) [22] is useful. The term is derived
from a hypothetical model of computation, called
a register machine [38].

A particular instance of a virtual register ma-
chine, VRM-Mm,n, consists of a finite set of reg-
isters R = {r1, ..., rm}, each of which can hold
a floating point value, a finite set of instructions
I = {I1, ..., In}. Such a register machine, imple-
mented in a high level imperative language, is re-
ferred to as ”virtual” because it has to be inter-
preted by software. The registers constitute the
machine’s mutable memory, and all program input
and output is communicated through the registers.
Additionally, registers may also be used to supply
the program with constants, which can be synthe-
sized in otherwise unused registers. Therefore, it
seems natural to define a register state Sr as a vec-
tor of m floating point values

Sr ≡ (r1, ..., rm)

Program inputs are supplied in the initial state Sr,i

and outputs are taken from the final register state
Sr,f . Beside the required number of input regis-
ters, additional registers can be provided in order
to facilitate calculations. These so called calcula-
tion registers (sometimes also referred to as internal
work registers) are normally initialized with a con-
stant value each time before a program is executed
on the fitness cases. The VRM-Mm,n is allowed
only to write to the calculation registers when ex-
ecuting the list of instructions (program). Thus,
the input registers are write protected during this
phase.

Finally, one or more registers may be defined as
output register(s), either among the calculation reg-
isters or among the input registers. The LGP struc-
ture facilitates the use of multiple program outputs.
By contrast, functional expressions like trees calcu-
late one output only [6].

In addition to the external register state,
VRM-Mm,n maintains an internal state: the pro-
gram counter, PC. The program counter is an in-
teger that selects which instruction to fetch and ex-
ecute. Branch instructions modify the PC to point
to the branch’s target; all other instructions always
increment the PC to point to the next instruction.
By definition, in LGP a program P is a vector of n
instructions

P ≡ (I1, ..., In)

Table 1: Instruction Set

Instruction type
General
notation

Input range

Arithmetic ri := rj + rk ri, rj , rk ∈ R

operations ri := rj − rk

ri := rj × rk

ri := rj/rk

Trigonometric ri := sin rj ri, rj ∈ R

functions
Conditional if(rj > rk) rj , rk ∈ R

branches if(rj ≤ rk)

The program counter PC naturally corresponds to
an index i, of P. A program terminates when
PC = n, i.e. when evaluation steps off the end
of the program.

The choice of instruction set should be based on
the same principles as in tree-based GP. The abil-
ity of GP to find a solution strongly depends on
the expressiveness of the instruction set. On the
other hand, the dimension of the search space, i.e.
all possible programs that can be built from these
instructions, increases exponentially with the num-
ber of instructions and registers. Therefore, the set
of possible instructions is limited to those of Table
1. The presence of the periodic sine operator in
the operator set is strongly motivated by the fact
that locomotion in biological creatures is cyclic in
nature. To assure semantic correctness, a slightly
different division operator (div) than the standard
division operator is defined. It works exactly as the
standard division operator, except for zero denom-
inator input. In that case, the protected division
operator returns a large constant value, here set to
108.

In LGP conditional branching is usually inter-
preted in the following way: if the condition in the
if statement evaluates to true, the subsequent in-
struction is executed. If, on the other hand, the
condition in the if statement evaluates to false

that instruction is skipped, and program execution
jumps to the next instruction instead, see Example
2.1. When using conditional branching, the control
flow of the program may be different for different
input situations, which is the motivation for includ-
ing branching in this investigation.
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Example 2.1 (Linear Program Execution)

This example shows a simple register manipulating
program in C notation. The code from line 2 to
line 10 constitutes the linear program, or instruc-
tion body, and the other code is just a wrapping
for managing the GP program. The execution of
the linear genome starts at the topmost instruction,
i.e. r[42]=r[55] * r[51], and proceeds down
the list, one instruction at a time. Suppose that
the first if statement (line 3) evaluates to true,
and that the second if statement (line 7) evalu-
ates to false. Then, the instructions on lines 2,
3, 4, 5, 6, 7, 9, 10 will be executed, but not the
instruction on line 8.

1: void GP(double* r){

2: r[42] = r[55] * r[51];

3: if(r[18] > r[32]); \\true

4: r[51] = r[61] * r[46];

5: r[36] = r[48] - r[60];

6: r[37] = r[28] * r[27];

7 if(r[15] > r[27]); \\false

8: r[42] = r[18] + r[45];

9: r[37] = r[53] / r[36];

10: r[26] = r[45] + r[55];

11: return;

12: }

13: int main(void){

14: double reg[80];

15: ...

16: GP(reg);

17: ...

18: return 0;

19: }

¤

The actual register machine uses instructions for
two or three registers. Three-register instructions
operate on two arbitrary registers and assign the
result in a third register (e.g. r[i]=r[j]+r[k]),
while two-register instructions operate on only one
operand (e.g. r[i]=sin(r[j])).

The term ’register’ here can be misleading. The
GP system does not operate on the actual CPU reg-
isters of the computer. The registers in this con-
text are simply allocated as arrays of integer values
in the RAM. Each instruction consists of four ele-
ments, encoded as integers, and the whole individ-
ual is a linear list of such instructions, see example
2.2 below.

Before the initialization process can begin, the
maximum allowed genome length has to be defined.
In LGP, the length of an individual is simply the
number of basic instructions it contains. A lin-
ear genome individual is initialized in the following
way:

Algorithm 2.2 (Initialization)

1. Randomly choose a length of the genome
within the permitted interval.

2. Add a randomly chosen instruction to the
genome.

3. Fill out the instruction with register references
to randomly chosen registers from the register
set and/or randomly chosen constants from the
constant range.

4. Repeat step 2 and 3 until the number of in-
structions added equals the length chosen in
step 1.

5. Repeat step 1 to 4 for every individual in the
population.

¤

So far, only steady-state tournament selection
has been used. The following tournament selection
scheme was used: two individuals are randomly
picked from the population to compete against each
other, and the best individual is selected with prob-
ability one. This procedure is carried out twice,
and the two selected individuals mate and produce
two new individuals. The newly created individ-
uals are then inserted into the population, on the
two worst individuals’ place, which are then erased
from the population. The quality of the randomly
initialized individuals is usually very low. The ini-
tial population is transformed in an evolutionary
search process by means of the genetic operators,
crossover and mutation.

Crossover works by swapping parent individu-
als linear genome segments. Two crossover points
in the first parent’s genome are randomly chosen,
and then two other crossover points in the other
parent is chosen. The instructions in-between the
crossover points are swapped, and the resulting in-
dividuals are the new offspring. This crossover op-
erator allows the genome lengths of the individuals
to vary over time, see figure 4.
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Figure 4: Length-varying two-point linear GP
Crossover. Selecting different crossover points
in both parents and swapping the intermediate
genome segments varies the length of the genomes.
The tokens (∗, ∼) represent arbitrary instructions
from the set.

In LGP, the mutation operator works on two dif-
ferent levels. The mutation operator first selects
which instruction to be mutated, and then it makes
one or more changes to that instruction. There are
normally three types of change that can occur:

• Change any of the register destinations to an-
other randomly chosen register.

• Change the operator in the instruction to an-
other randomly chosen operator.

• Change a constant to another randomly chosen
constant.

The atomic units of the mutated instruction (oper-
ator, registers and/or constant) must be members
of the original sets.

In all GP-applications, finding a proper fitness
function that guides the artificial evolution in the

desired direction is of great importance. The pri-
mary goal of this project includes producing a sus-
tainable, robust, anthropomorphic (i.e. human-
like) bipedal gait. Defining the characteristics of a
sustainable, robust gait is almost self evident; the
biped should never fall, no matter how long time a
good individual is being executed, and it should
handle perturbations from the environment in a
robust way. One can easily find proper measures
for this, like ’time-of-walking’, ’walking-speed’, etc.
Defining a measure for ’anthropomorphic’ in this
context is harder. Up to now, we simply let this be
judged by the humans watching it.

2.2.3 EA for bipedal walking

Since the simulation is entirely deterministic are
all individuals evaluated under identical conditions.
They all start from the same upright pose, with the
same orientation. The execution time for an indi-
vidual is maximum N simulation time steps (eval-
uation time = N/0.009 s, where N = 4000), and
if an individual causes the robot to fall before this
time is reached, the evaluation is terminated. In the
beginning of a simulation, the great majority of in-
dividuals are terminated before the intended eval-
uation time. The settings of the EA are summa-
rized in table 2. The evolutionary algorithm used in
these simulations was a steady-state tournament se-
lection algorithm, utilizing two-point crossover and
mutation, and with the following execution cycle:

Algorithm 2.3 (Evolutionary Algorithm)

1. Randomly initialize a population of individual
solutions.

2. Evaluate all individuals according to the fitness
measure, Eq. 2. The simulation comprises the
following steps:

a. Create an instance of the simulated robot.

b. Record the initial position in 3d-space of
all the robot’s limbs.

c. Execute the individual for N simulation
time steps.

d. Record the final position of all the robot’s
limbs.

e. Compute the fitness value.

f. Destroy the simulated robot.
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3. Perform tournament selection.

4. Apply genetic operators crossover and muta-
tion on the winners to produce two children.

5. Replace the two losers in the population with
the offspring.

6. Evaluate the children according to the fitness
function (as described above in step 2).

7. If the termination criterion is not met, go to
step 3.

8. Stop. The best individual represents the best
solution found.

¤

2.2.4 Encoding scheme for walking

In the current implementation a chromosome takes
form of an array of integers, as shown in exam-
ple 2.2, where each row in the chromosome is in-
terpreted as an instruction. An instruction is en-
coded in the following way: the first and second el-
ements of an instruction refer to the registers to be
used as arguments, the third element corresponds
to the operator, and the last element is a regis-
ter reference for where to put the result of the
operation. The arithmetic operators are encoded
as add=1, sub=2, mul=3, div=4, sine=5 in the
genome. Conditional branching operators are en-
coded in the third element as 6=if(r[j] > r[k]),
and 7=if(r[j[ <= r[k]). When decoded, the
first line (instruction) in example 2.2 is interpreted
as r[42]=r[55] * r[51].

Example 2.2 (Linear Program Encoding)

This individual comprises nine instructions. The
genome shown in this example is also shown in de-
coded form in Example 2.1.

55, 51, 3, 42,

18, 32, 6, 41,

61, 46, 3, 51,

48, 60, 2, 36,

28, 27, 3, 37,

15, 27, 6, 33,

18, 45, 1, 42,

53, 36, 4, 37,

45, 55, 1, 26,

¤

The information flow between the control system
and the robot is communicated through the regis-
ters. Currently, there are 67 registers used. At
timestep t sensor signals are fed into the sensor
registers (r55 − r66). Simultaneously, the robot’s
current joint angle positions are recorded in the
I/O- and calculation registers (r0−r25 and r26−r51

respectively). Registers for ephemeral constants
(r52 − r54) are initiated at the beginning of the GP
run. An ephemeral constant is initialized with a
random value when created, and then it retains
that value throughout its lifetime during a run.
When the VRM executes the GP-individual (pro-
gram) the contents of the calculation registers are
manipulated. When the program execution has ter-
minated, motor signal generation (MSG) is initi-
ated; a modified signum function (Eq. 1) operates
on the final contents of the calculation registers,
and supplies the output to the I/O registers. These
motor signals are then sent to the robot, which then
in timestep t+ η executes the motor commands. A
more detailed description of information flow in the
controller is given in figure 3.

3 Simulations

A similar simulation using a simplified version of
the LGP-system described in this paper was con-
ducted by Wolff and Nordin [47] (Paper III in [46]).
The bipedal model used was also simpler, i.e. it had
a smaller number of DOF. The only feedback to the
control system was the current joint angles of the
biped.

The biped model used in the simulations de-
scribed in this paper has a more human-like ap-
pearance. Further, the control system is enhanced
with readings from accelerometers, and from a vir-
tual inertial measurement unit (IMU). The LGP
system is augmented with conditional branching as
well.

In this section, the organization of three differ-
ent sets of simulations is described. In the first set
of simulations approximately 80 test runs were con-
ducted in order to develop, test and verify the func-
tionality of the evolutionary system with physics
simulation. Preliminary results were obtained,
which motivated some modifications and improve-
ments of the evolutionary simulation system. These
simulations are referred to as the groundwork simu-

12



Table 2: Koza style tableau, showing parameter settings for the evolution of locomotion control programs
for the simulated humanoid robot.

Parameter Value

Objective Approximate a function that produce
robust biped gait

Terminal Set 66 integer registers

Function Set
add, sub, mul, div, sine,

branching

Raw Fitness According to Eq. 1, scalar value

Standardized Fitness Same as Raw Fitness

Population Size between 8 and 512 individuals

Initialization Method Random Gaussian distribution

Simulation Time corresponding to 36 s. of real time

Crossover Probability Between 0.0 and 1.0%

Mutation Probability 1.0

Initial Program Length Gaussian distribution, between 〈32〉
and 〈512〉 instructions.

Maximum Program Length 1024 instructions

Maximum tournament number 25000

Selection Scheme Tournament, size 4

Termination Criteria Max tournament number

lations (Section 3.1). These simulations constitute
the foundation for the setup of the simulations com-
ing next.

As described in Section 3.2, main simulations
setup, 60 independent simulation runs were per-
formed mainly to investigate how the outcome is
affected by specific parameter choices for the LGP
system and the robot. Finally, a number of ad-
ditional simulations are appended (Section 3.3).
These were carried out in order to investigate some
possible future enhancements of the evolutionary
method.

3.1 Groundwork simulation setup

Here, the organization of the initial set of simula-
tions is outlined. The fitness measure is described
in detail, and its configuration is motivated. An
implicit fitness measure, i.e. energy discharging, is
introduced as well. The four different stopping cri-
terions used are described as well.

3.1.1 Fitness Measure

Several different approaches to fitness measure was
investigated, the first one investigated by Wolff
and Nordin [47]. The initial assumption mentioned
there, that it should be important to include the
”height above ground of the robot” to the fitness
measure, was dropped. The reason for this was that
here, when this measure was included, it was found
that the robot was prevented from moving freely
enough to really do any advancement in efficient
walking. To simply drop that term seemed to be
the best choice here. Another problem arose when
the gait controllers had reached the level of per-
formance to maintain the robot in an upright pose
and balance it. In order to reach higher levels of
fitness they just let the robot stand idle until there
was a very short moment of evaluation time left,
and then take a large leap forward. Then, they
get rewarded for good distance coverage over the
trial, and the fact that the robot would have fallen
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to the ground if evaluation was not terminated at
that moment did not affect the evolutionary pro-
cess. This became visible only when individuals
were examined after the evolutionary run. Individ-
uals can be recapitulated for infinitely long time
afterwards. However, a proper fitness measure was
found to be:

F =

N
∑

t=0

(rR + rL)ŷ (2)

where N is the number of time steps in the sim-
ulation, rR and rL are the position vectors to the
robot’s right and left foot respectively, and ŷ is the
unit vector along the y-axis, which is the forwards
direction of the robot. One way to cope with the
programs keeping the robot idle most of the time
and activating it at the end of the evaluation, is
simply to give it a (small) reward in every time
step. The fitness function above is a sum of the
contributions given for the robots actions in each
time step. Thus the individual will be given higher
fitness if the robot gradually approaches end point
of its locomotion trajectory, rather than if it stand
still until evaluation has almost finished, and then
takes a large leap. That is, if the end point is the
same in both cases.

3.1.2 Energy Discharging

In the early runs, most individuals hardly walked at
all, and those who did, they walked in a very unnat-
ural way. For those individuals, some of the joints
showed ”oscillating” behavior, i.e. they rapidly
switch direction of revolution between each con-
troller time step η. The oscillations were hardly
visible for an observer, but nevertheless the robot
slowly drifted across the floor. Another peculiar
means of locomotion that emerged was robots walk-
ing sideways, like a crab fish do. That kind of gait is
faster than the oscillating gait described above, but
neither it is anthropomorphic. In order to prevent
such misbehaviors to emerge, an energy discharging
function was added. Human bipedal locomotion is
very energy efficient, compared to the walks of hu-
manoid robots. As an example, the state-of-the-art
Honda humanoid Asimo uses at least 10 times the
energy (scaled) of a typical human [9].

In each evaluation round the energy consumption
of the biped was monitored as it moved its joints,

and it was only allowed to use a specific amount of
energy. The assumption was that this should yield
a pressure on evolution to favor specific gaits that
are energy efficient, and thus more anthropomor-
phic gaits ought to emerge.

Energy consumption, Ejt, of the j:th joint dur-
ing timestep t equals the work performed in that
joint during the timestep t. The total energy con-
sumption of the biped, Etot then, is the sum of Ejt

over all joints ji ∈ {j0, j1, ..., jn} and all timesteps
ti ∈ {t0, t1, ..., tn}. Further, the work performed
by a (generalized) force in circular motion, moving
from an angle ϕa to ϕb, is defined by the following
relationship:

Wba =

b
∫

a

|M|dϕ (3)

where M is the applied torque. In the simulation,
time is discretized and the applied torque is con-
stant during each timestep. Thus, the total energy
consumption is given by:

Etot =
∑

j,t

(ϕb,jt − ϕa,jt) |Mba,jt| (4)

When the total energy consumption Etot equals
some predefined value, evaluation of that individ-
ual is terminated what so ever. This can be thought
of as a motor battery that discharges as the robot
moves, and when the battery eventually gets empty,
the robot stops.

3.1.3 Termination of Individuals

There are several ways in which the evaluation pro-
cess of an individual could be terminated. First of
all, there is a maximum allowed evaluation time of
4000 timesteps. When this time has passed, ter-
mination is definite. Second, if the current indi-
vidual causes the biped to fall, evaluation will also
be interrupted. Third, too high energy consump-
tion (as described in section 3.1.2) could impose the
termination of an individual as well. Last, in or-
der to speed up the evolutionary process, another
continual monitoring of individuals has also been
introduced. A conditional termination criterion is
specified according to the following expression:

F (i) + ic
ti

<
Fc + ic

ic
(5)
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where F (i) equals the fitness contribution at
timestep ti. Fc and ic are constants, set to 20.0
and 1000 respectively. The interpretation of the
above inequality is that the fitness contribution in
each timestep should grow at least linear with time.
The right hand side of Eq. 5 is a constant, spec-
ifying the minimal growth rate accepted. If the
expression evaluates to true at some point, evalua-
tion of that individual is terminated immediately.
This constraint has the effect on evolution that in-
dividuals which spend most of their evaluation time
standing idle are terminated earlier. Thus, a large
portion of the expensive simulation time is freed
up. Further, a positive side effect is that such indi-
viduals receive lower fitness scores.

3.1.4 The role of body proportions

In human development, basic skills like walking are
acquired in an early age, usually before the age of
2.5 years. At that age, however, the body develop-
ment is far from accomplished. That is, a child’s
head is extremely large in proportion to the rest of
the body, compared to an adult’s body. The head
of a very young child make up about a quarter of
their total height [5].

For that reason, simulation runs with different
body proportions of the bipedal has been con-
ducted. That is, evolution with the body propor-
tions of an adult, and the body proportions of a
child was examined.

3.2 Main simulation setup

The aim of these simulations was to investigate
how the outcome was affected by specific param-
eter choices of the system. Parameters of the LGP
system were investigated, as well as a parameter
specific to the actual control problem. LGP spe-
cific parameters was population size P (t), expec-
tation value of initial genome length of the popu-
lation 〈Li〉, crossover probability pc, and mutation
rate rmut. The problem specific parameter exam-
ined was the initial energy level Ei of the motor
battery. Initially, these parameter values were set
to their default values, which were determined em-
pirically. The following default parameter values
were used; 128, 128, 0.8, 0.2 and 128, respectively.

Table 3: Parameter settings examined, the default
values are typeset in italic.

Parameter Values

P (t) 8, 32, 128, 512
〈Li〉 32, 64, 128, 256
pc 0.0, 0.2, 0.8, 1.0
rmut 0.1, 0.2, 0.4, 0.8
Ei 32, 128, 256, 512

3.3 Additional simulation setup

In this section, a number of supplementary runs
will be described. Those runs were conducted be-
cause the results from the main simulation was not
entirely convincing, so possible ways of improving
the setup need to be investigated.

3.3.1 Robot controlled by dual controllers

When starting to walk the robot’s configuration is
transformed from the initial standing posture, into
a cyclic motion pattern. Once the cyclic phase is
entered, a configuration similar to the initial static
configuration is not likely to occur again. At least
not until the walking stops. It is reasonable to as-
sume that the transformation phase, from static
posture to dynamic walking, should best be han-
dled by one controller, or brain, and the cyclic
walking phase by another brain. Therefore, an ap-
proach with dual controllers, executed in series, was
investigated as well. Control of the robot is then
switched from the first brain (B1) to the second
brain (B2) after a fixed amount of execution time.
Here, the switching occurs after 3 s.

In this approach the genomes is divided in two
parts, B1 and B2. Apart from that, everything
else works in the same way as before, regarding
the LGP system. However, the crossover opera-
tor is restricted to only exchange genetic material
between the B1 part of the first individual, with
genetic material of the B1 part of the second indi-
vidual. Correspondingly, only B2 material can be
exchanged with B2 material, between individuals.

3.3.2 Counting the number of foot steps

In order to prevent the robots from taking many
short, small steps during walking, individuals were
punished for the number of steps they used when
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walking. A function was introduced that counted
the number of walking steps, and then individuals
were punished accordingly by reduced fitness re-
wards. This was done by simply multiplying the
fitness score according to Eqation 2, with the fol-
lowing factor:

Fs =
1

√
sl,r

(6)

where sl,r is the number of foot steps during walk-
ing, with the left and right foot respectively. Thus,
the total fitness contribution is reduced according
to a factor inversely proportional to the square root
of the number of footsteps.

3.3.3 Obstacle in front of the robot

In an attempt to force individuals to make the
robot to take larger and higher foot steps, an obsta-
cle was placed directly in front of the robot at the
evaluation. The height of the obstacle was varied,
in different runs, between one fifth, and one half of
the height of the robot’s feet.

The simulation was based on the following as-
sumption: if the robot’s first step is high enough
to climb the obstacle in front of it, it is more likely
that the robot will continue to take that high foot
steps. Further, that one individual will also get
higher fitness than other individuals, which cannot
cope with the obstacle, and thus give rise to more
offspring. Hence, individuals taking high foot steps
will be promoted by evolution.

3.3.4 A lifting force applied to the robot

It is very a difficult task to learn to walk, just start-
ing from a standing pose. In an attempt to make it
easier for individuals to start walking, an approach
was tried were an upwards directed force was at-
tached to the robots body during evaluation. This
setup resemble to some extent the situation were
an infant is learning to walk, supported by his par-
ent or another adult person: when the child starts
to lose balance, the supervisor (adult person) can
quickly give him support and lift him up again,
so that he can continue with the training again.
In this simulation, the spring force was applied to
the robot’s body, which prevented the robot from
completely falling to the ground. The spring force
obeyed Hooke’s law, F = C · ∆l, where C is the so

called spring constant, and ∆l is the vertical dis-
placement from the starting position. Note that
there are no horizontal components of the spring
force, just the vertical one.

4 Results

4.1 Groundwork simulation results

Apart from the testing, verification, and fine-tuning
of the LGP system with physics simulation, the
major contribution from these simulations is that
adding the energy discharging function improved
the results by a great portion. More anthropomor-
phic gaits evolved, and both the oscillating behav-
iors and the crab-like walking behavior ceased to
emerge from the evolution.

The case when comparing evolution with differ-
ent robot morphologies (Section 3.1.4) did not yield
any specific result. Similar gaits emerged with both
morphologies, approximately equally often.

4.2 Main simulation results

This section presents the outcome of 60 indepen-
dent simulation runs. Due to limitations of time
and computational power, not all of the 1024 pos-
sible combinations of alternative parameter settings
were examined. Instead the parameters were var-
ied, one at a time, from their default value set-
tings. Thus, we obtain 20 unique parameter com-
binations. The actual settings for each run are clear
from table 4, as well as the resulting fitness values.
For statistical significance all runs were repeated
three times with identical parameter settings.

The best over-all fitness values were obtained for
parameter settings equal to 128, 128, 0.8, 0.2, and
256. As clear from table 4 default parameter values
of P (t) and rmut produced the best fitness values,
of respective partition. A (default) value of 0.8 for
the parameter pc also gave the best result of its par-
tition, at least when looking at the f̄max and f̄avg

fitness values. On the contrary, when considering
only the best fitness value of a single individual of
that partition, a pc value of 0.0 (i.e. only mutation
was used) outperformed the others, however with
the worst value of s(f̄max). The best fitness values
for 〈Li〉 and Ei were obtained for values of 32 and
256, respectively.
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Table 4: Fitness values of the best individuals, max(f̄max); averages of the best individual fitness values,
f̄max, with standard deviations s(f̄max); averages of the population fitness values, f̄avg. All values were
found after 25000 tournaments. Each one of the five partitions of the table shows the variations of a
single parameter value. Numbers in bold represent the best fitness values of each partition.

max(f̄max) f̄max s(f̄max) f̄avg P (t) 〈Li〉 pc rmut Ei

5728 4635 1777 3475 8 128 0.8 0.2 128
5839 5015 1144 4701 32 128 0.8 0.2 128
7303 6760 480 6535 128 128 0.8 0.2 128
6954 6604 486 5032 512 128 0.8 0.2 128
7449 6900 586 6546 128 32 0.8 0.2 128
5817 5065 848 4864 128 64 0.8 0.2 128
7303 6760 480 6535 128 128 0.8 0.2 128
6176 5232 1194 4007 128 256 0.8 0.2 128
7943 6054 1662 4621 128 128 0.0 0.2 128
6580 5468 973 5303 128 128 0.2 0.2 128
7303 6760 480 6535 128 128 0.8 0.2 128
7197 6687 578 6419 128 128 1.0 0.2 128
6417 5170 1109 4679 128 128 0.8 0.1 128
7303 6760 480 6535 128 128 0.8 0.2 128
6797 6292 580 5933 128 128 0.8 0.4 128
6308 6194 148 4517 128 128 0.8 0.8 128
2049 1270 581 1101 128 128 0.8 0.2 32
7303 6760 480 6535 128 128 0.8 0.2 128
8958 7598 1375 7368 128 128 0.8 0.2 256
7076 6352 660 6020 128 128 0.8 0.2 512

Summarizing the results of table 4; best fitness
values of each partition of the table, according to
f̄avg, were obtained for the following five parameter
values: 128, 32, 0.8, 0.2, and 256. The best indi-
vidual found had a fitness value of 8958. During its
evaluation time, which corresponds to 36 s of real
time simulation, it covered a distance of 1.93 m.

A second series of simulation runs were per-
formed with the parameter value settings equal to
128, 128, 0.8, 0.2, and 256. Then, the best indi-
vidual obtained had a fitness value max(f̄max) of
9044, and the averages of the best individual fit-
ness values f̄max were equal to 7483. The deviation
of fitness values compared with the best runs of the
first series was within the margin for error.

The graphs of figure 6 show covered distances,
d(t), for the best individual found and two other in-
dividuals, for comparison. As clear from the figure,
the best individual (i.e. the one labeled ”8958”)
traveled the longest distance during the evaluation

time, and thus received highest fitness score. At the
end of the evaluation period, however, it fell back-
wards. That occurence is indicated by the graph
d(t) dropping off at the end. The other two indi-
viduals both remained on their feet for the whole
evaluation period of 4000 timesteps, but they re-
ceived lower fitness values. Successful individuals
in these simulations all exhibit cyclic locomotion
behavior, exemplified by the graphs in figure 7.

4.3 Additional simulation results

Only a few preliminary test runs have been per-
formed with these simulation setups. The setup
with a lifting force applied to the robot (Section
3.3.4) did not yield any improvement. No walking
behavior at all emerged.

The case with an object placed in front of the
robot (Section 3.3.3), no individual so far have
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Figure 5: Top panel: Walking scene of the bipedal robot. Starting from the left, double support phase
is depicted (a), followed by the single support phase with left foot in swing motion (b). Then again
a double support phase (c), followed by single support phase with the right foot in swing motion this
time (d). Finally, the gait cycle is completed with a double support phase (e). Bottom panel: Plot of
the depicted gait cycle. The graphs show the height above ground, h(t), of the CoM point of the left
foot (solid line) and the right foot (dashed line), respectively. Horizontal positions of the vertical lines
indicate corresponding double- and single support phases (a) throgh (e).

managed to climb the obstacle. Thus, no walking
behavior emerged.

When counting the number of foot steps of the
robot (Section 3.3.2), the best individual found so
far managed to walk a few steps, and then it stood
idle until it got terminated, accumulating some fit-
ness meanwhile. Most runs in the main simulation
did better off.

However, in the simulation with two brains seri-
ally controlling the robot, individuals emerged that
has almost as high fitness values as the best individ-
uals from the main simulation runs. But, consid-
ering the way they walk, it looks even better than
the best individuals from previous runs. That is,
the gaits look more anthropomorphic.

5 Discussion and Conclusions

The primary goal of the simulations reported in
this paper was to evolve robust, anthropomorphic
bipedal locomotion. Evolution generated controller
programs that made the simulated robot stride
across its environment by means of bipedal loco-
motion. When executed afterwards, a couple of the
best individuals were actually capable of producing
locomotion behavior several times longer than the
evaluation time of 36 s. For instance, the individual
labeled ’5592’ in this paper was executed for a time
period of more than 20 minutes, and the robot was
still walking forward. However, no one individual
exceeded a walking speed of 5.37 cm/s. Clearly, this
is a very moderate walking speed, considering the
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Figure 6: Graphs of covered distances, d(t), during
4000 evaluation timesteps, for three different indi-
viduals. These individuals received fitness scores
of 8958, 5728 and 5591, respectively. The individ-
ual with fitness value 8958 was actually the best
individual found in all the runs.

fact that the dimensions of the bipedal robot corre-
sponds to the size of a (small) human being. Even
the best individuals lifted their feet only a small
distance above the ground when walking, and also
used a very short step length. Given these charac-
teristics, low walking speed will of course be the re-
sult. These individuals simply did not activate the
knee joints of the biped very much. When walking,
these individuals activated the hip joints primarily.
This kind of locomotion behavior is somewhat dis-
similar to human gait. However, apart from these
defects, good individuals generally made the robot
walk in an upright, forward directed manner. Fur-
ther, some of the successful individuals clearly uti-
lized the inherent dynamics of the physical system
when walking.

Evolution is a theory of gradual, hereditary
change. When observing the evolutionary process
of any one of the successful simulation runs de-
scribed here, that statements is clearly supported.
For example, the individual previously referred to
as ’5728’ in this paper shows an atypical way of
walking with its left foot slanted ”toe up”, i.e. only
the heel is in contact with the ground. Individual
’5728’ emerged as the best one of the run in tour-
nament number 18839, but the above mentioned
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Figure 7: Time series of resulting body dynamics,
of the individual of fitness 5728. The graphs show
the height above ground, h(t), of each foot, dur-
ing 500 timesteps (equal to 4.5 s) of simulation.
The fact that both curves never indicate an altitude
of zero (which is supposed to happen when a foot
touches the ground) is a consequence of the fact
that both feet were constantly tilted some unspec-
ified angle away from the horizontal plane, which
the graphs were not compensated for. However,
since this individual performs a cyclic walking pat-
tern each local maximum indicates a single foot-
step. The figure contains a sequence of 9 steps of
the right foot (dashed line), and 8 steps of the left
foot (solid line).

peculiarity was observed in evolution as early as in
tournament 180, for an individual with fitness equal
to 444. It could very well be possible that different
”tracks” of anomalies, e.g. like the one described
above, could co-exist during evolution, but that was
not investigated here.

Figure 8 show fitness progress during a represen-
tative evolutionary run. Typically, there are sev-
eral distinct increments in the fitness curve of the
best individual. Some of these fitness leaps corre-
spond to what could be thought of as transitions in
evolution. In the initial randomly generated pop-
ulation, almost all individuals fall over after a few
seconds of evaluation, thus they receive poor fitness
scores. Rather soon however, individuals learn to
stand up without falling over. At this stage, they
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Figure 8: Fitness progress during an evolutionary
run, exemplified by the run which generated indi-
vidual of fitness ’5728’.

receive slightly higher fitness, but they get termi-
nated according to the fourth termination criterion
(Eq. 5). The next transition occurs when the best
individuals get more movable, mainly by activat-
ing the robot’s hip joints. Gradually, the magni-
tude of these motions increase, which results in a
few small forward steps. Hence, fitness scores reach
the next level, despite most of the individuals fall
over after a while. The evolutionary stage follow-
ing from that include individuals that can continue
to walk forward without falling at all, but they all
get terminated, again because of the fourth crite-
rion. The last great transition arises when a major-
ity of individuals begin to walk just slightly faster,
but receive much better fitness scores. They man-
age to adapt their walking pace to just above the
threshold defined by the fourth criterion (Eq. 5),
and as a consequence they walk almost the full
evaluation time, terminated only because of the en-
ergy discharging criterion. After that, evolution fa-
vors those individuals that can cut down the energy
cost. During that phase only small fitness incre-
ments were observed.

6 Future work

In order to fully accomplish the goals of this
project, there are several alternative extensions or
modifications left to investigate.

In this study a population of individuals, or pro-
grams, is evaluated for the task of bipedal locomo-
tion. When evaluating individuals in the simula-
tion, all individuals have to start the robot from
the same upright standing position (similar to the
’attention’ stand). The activity of bipedal walking
is mainly cyclic to its nature. It might therefore
seem unnatural to commit charge of control to one
single closed-loop program in such a position, when
that posture is not present as any of the postures
in the walking cycle. Accordingly, we have carried
out preliminary simulations using two individuals
controlling the robot. One program is controlling
the robot for the first 3 s of evaluation time, and
then control is taken over by a second program.
Thus, we have one start-up program, and one cyclic
program in the same individual. The results so far,
which are based on a few simulation runs only, look
promising. However, the evaluation time greatly in-
creases since there are two genomes, instead of one,
in each individual which should evolve into success-
ful individuals. Currently, the point at which con-
trol is taken over by the second individual is spec-
ified at before hand. A natural extension would
thus be to let this moment be decided upon dur-
ing execution of the individual instead. A suitable
behavior selection method to do this would be the
utility functions (UF) method for instance [32].

Even the best individuals generated in the sim-
ulations described in this paper are impaired by
serious shortcomings, as mentioned in the previ-
ous sections. First of all, the foot steps are too
short, and second, the knee joints are used very lit-
tle. Before any really anthropomorphic gaits can
be expected to emerge, such weaknesses must be
eliminated.

Evolving robot controllers for such a complex
task as bipedal locomotion requires realistic sim-
ulation of the bipedal robot model. Such simula-
tions are computationally very costly. During an
evolutionary run, most of the computation time
(maybe as much as 99%) is spent on evaluating in-
dividuals by means of full rigid-body simulations.
Only a small fraction of the time is allotted to EA
related tasks (mutations, crossover etc.). An ap-
proach to speed up the evolutionary search pro-
cess has been proposed by Ziegler et al. [50]. In
their method a second GP system is involved, which
evolves meta-models of the first GP system’s fitness
function. Hence, time consuming evaluations can

20



be replaced by faster classifications of individuals,
or fitness value estimations. In their simulations
(evolving gaits for a 12 DOF, four-legged robot)
they could save as much as 50% of the evaluations
with this method, compared to ”standard” fitness
evaluations.
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